

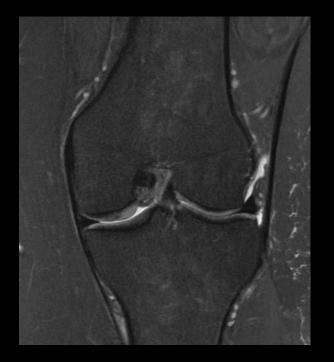
Practical MSK MRI and CT Physics and Image Optimization

Lauren Pringle, MD 2018-2019 MSK Fellow

Lecture goals

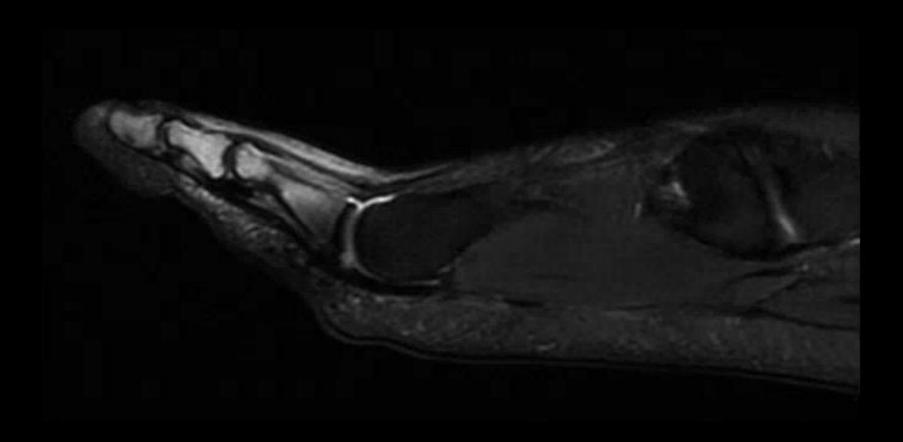
- Review importance of understanding image optimization as an MSK radiologist
- Review relevant MRI (and CT) physics
- Cover coils and their role in image optimization
- Review common artifacts and troubleshooting
- Cover specific techniques available to optimize and customize MSK imaging
- Cover some potential future directions
- Provide resources and tips for further reading

Background

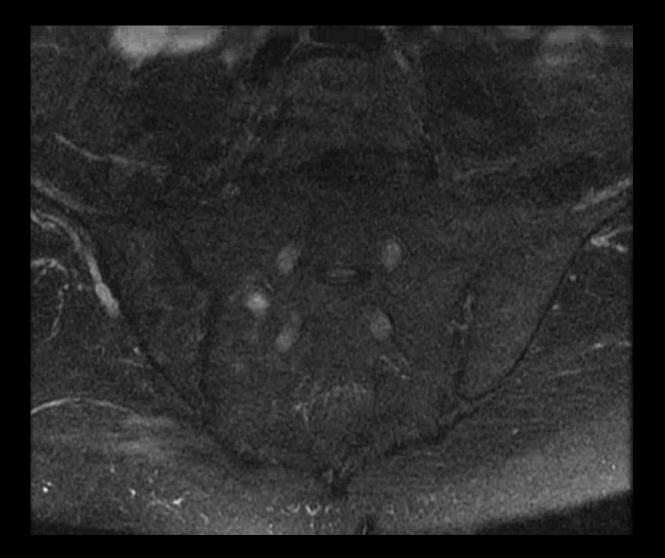

- Cross-sectional imaging (CT and MRI in particular) play a large role in our practice
- Make up a large part of RVUs
- In many private practice groups, there are limited MSK specialists and so you may be called to review/revise/create MSK protocols
- Techs may ask you to troubleshoot problems
- You may notice that your practice's protocols are suboptimal and may want to improve them

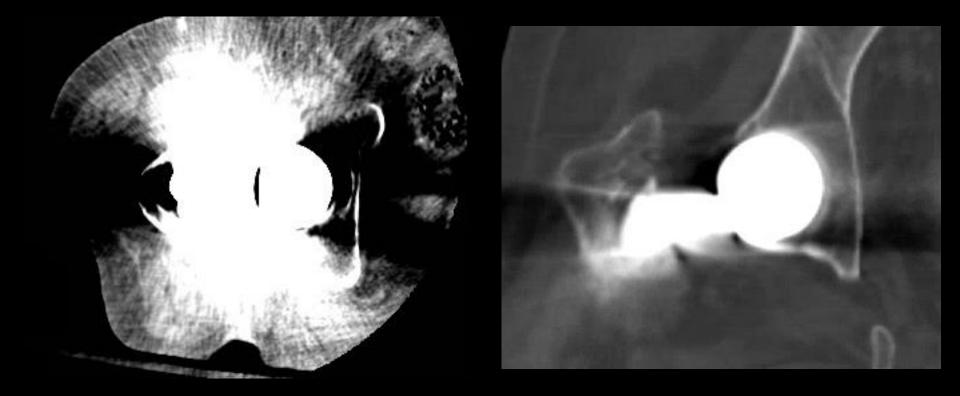
Background

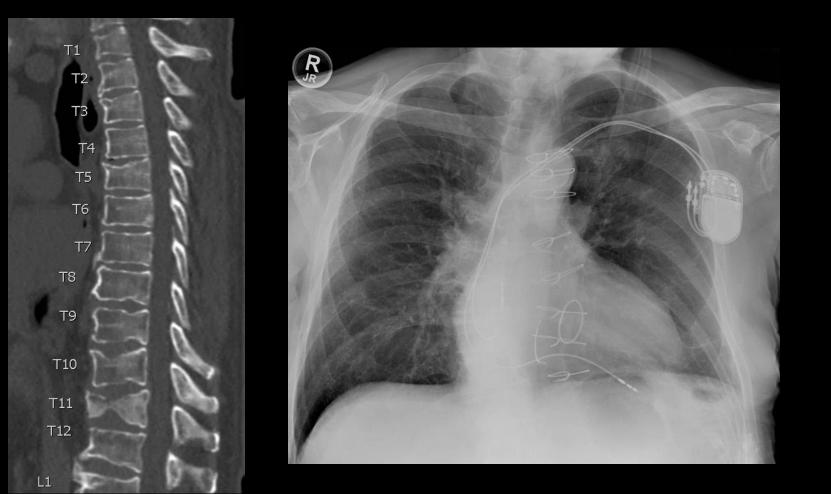
- Do not want to mistake artifacts for pathology
- As MRI sequences get faster, studies will be shorter, easier to tolerate, and enable more patient throughput
- For metal implants specifically, US is expected to be doing 0.5 million hip arthroplasties per year in 2030, and 3.48 million knee arthroplasties per year by 2030 [Kurtz 2007]

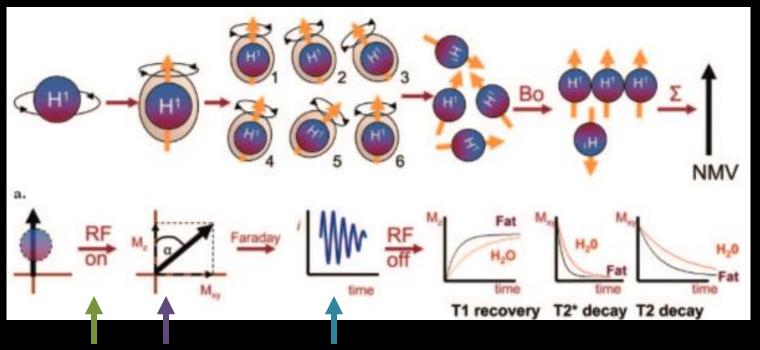

Example MSK cases/scenarios

Example Case 1: your practice wants to you to check/update the knee MRI protocol

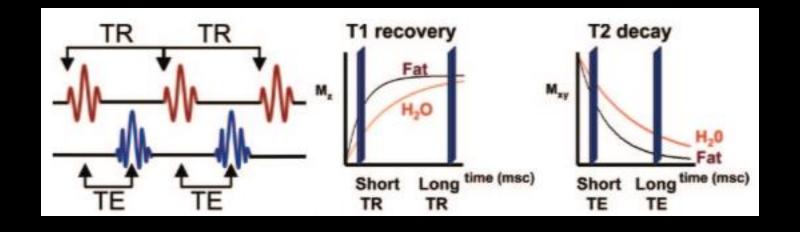



Example Case 2: poor fat saturation in a forefoot MRI


Example Case 3: atypical hemangioma or prostate metastasis?

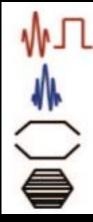

Example Case 4: concern for periprosthetic fracture with hemiarthroplasty; CT limited

Example Case 5: age of spinal compression fractures; unknown pacer



RF pulse applied to excite a specific **slice**

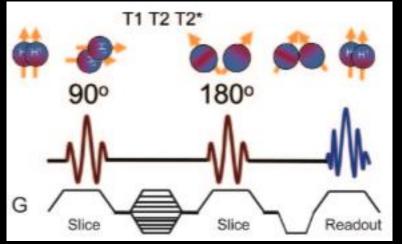
Specific flip angle: results in transverse & longitudinal magnetization

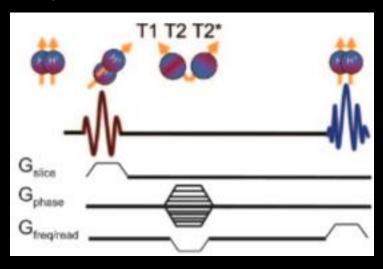

Current induced in a receiver coil

Bitar 2006

T1 contrast: TR time

T2 contrast: TE time


Radiofrequency (RF) pulse


Echo or Hahn Echo

Upward (positive) Gradient Downward (negative) Gradient

Phase encoding Gradient

Spin echo vs gradient echo

Rephasing

Flip angle

Eff @ decr inhomogen.

Acquisition t

RF pulse 90 deg only Yes, very(true T2) Long/very slow

Variation of gradients

Variable

Not very (T2* weighting)/susceptibility

Short/fast

Bitar 2006

Spin echo vs gradient echo: applications in MSK

SPIN ECHO:

-Includes fast spin echo, turbo spin echo, inversion recovery -Workhorse in MSK

GRADIENT ECHO:

-More susceptibility

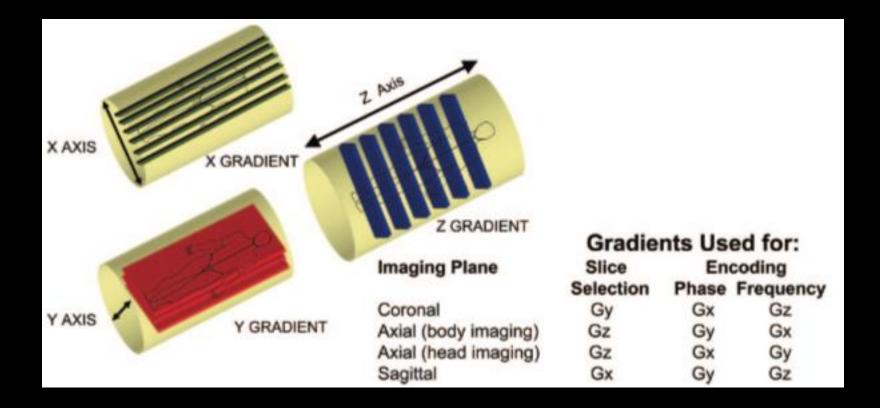
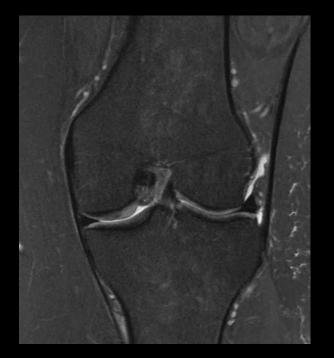

-Scouts, often post-contrast, diffusion, chemical shift

Table 1 Effect of TR and TE on M	R Image Cor	itrast
Imaging Technique	TR	TE
T1 weighting T2 weighting Proton-density weighting	Short Long Long	Short Long Short

Table 2 Typical TR a Sequences	and TE Values for	SE and GRE
	TR	TE

	T	R	TE			
Sequence	Short	Long	Short	Long		
SE	250-700	> 2000	10-25	> 60		
GRE	< 50	> 100	1-5	> 10		


	TR	TE	Flip angle	TI
T1	<800	<30	90	
T2	>2000	>80	90	
PD	>1000	<30	90	
MSK PD	>2000	30-70	90	
STIR	>2000	>60	180, 90	120-170
GRE T1	var	<30	70-110	
GRE T2*	var	<30	5-20	

Phase encoding, frequency-encoding, and slice selection gradients

- Slice selection gradient:
 - RF gradient in z axis for axial
- Phase encoding gradient:
 - before frequency, after slice
 - Induces phase variability within slice
- Frequency encoding gradient:
 - a.k.a. readout gradient; when signal is acquired
 - Perpendicular to phase gradient

Example Case 1: your practice wants to you to check/update the knee MRI protocol

1.5 T knee protocol: GE Signa Explorer

Series	Flip (deg)	Echo	TE	TI	TR	Thick/ spacing	FOV (cm)	Matrix	NEX
3-plane loc (GRE)	90	1/1	78		1163	5.0/5.0	24x24	384x256	0.53
Ax PD FSE FS	160	1/1	31		2000	4.0/1.5	15x15	384x224	4
Sag PD	160	1/1	34		2932	4.0/0.4	16x16	320x224	4
Sag T2 FS	142	1/1	70		3773	4.0/0.4	16x16	384x224	4
Cor T1 FSE	160	1/1	11.8		503	4.0/1.0	14x14	320x224	4
Cor T2 FS	142	1/1	68		3347	4.0/1.0	14x14	384x224	4

GE Signa Discovery 750 3T knee protocol

Series	Flip (deg)	Echo/ ETL	TE	rBW	TR	Thick/ spacing	FOV (cm)	Matrix	NEX
Ax PD FS FSE	110	1/10	30	50	3655	3.0/0.5	12x12	384x384	2
Ax T1 FSE	111	1/4	Min full	50	650	3.0/0.5	12x12	400x320	2
Sag PD FSE	110	1/8	35	50	2922	3.0/0.5	14x14	512x320	2
Sag T2 FS FSE	125	1/14	50	62.5	4487	3.0/0.5	14x14	400x320	2
Cor T1 FSE	110	1/4	18	50	800	3.0/0.5	14x14	512x352	2
Cor T2 FS FSE	125	1/13	50	62.5	4341	3.0/0.5	14x14	420x300	2

GE Signa Discovery 750 3T knee protocol

PATIE	NT POSITION		IMAGING PARAMETERS		
Patien	t Entry	Feet First	Imaging Mode	2D	
Patien	t Position	Supine	Pulse Sequence	FSE-XL	
Coil C	onfiguration	GEM Flex Medium Array	Imaging Options	NPW, EDR, TRF, Fast, ARC	
Plane		OBLIQUE	PSD Name	fsenpw	
Series	Description	AX T1 FS Post	SCAN RANGE		
SCAN	TIMING		FOV	12.0	
Flip A	ngle	111	Slice Thickness	3.0	
TE		Min Full	Slice Spacing	0.5	
	er of Echoes	1	ACQ TIMING		
TR		785.0	Freq	400	
	Train Length	3	Phase	300	
Receiv	ver Bandwidth	50.00	Freq DIR	A/P	
IMAGE	EENHANCE		Fat Shift DIR	Normal (A)	
Filter 0	Choice	None	NEX	2.00	st
GATIN	IG/TRIGGER		# of Acq. Before Pause	0	FS Post
Auto T	Frigger Type	Off	Phase FOV	1.00	К
GATIN Auto T FMRI			Auto Shim	Auto	AX T1 I
PSD T	rigger	Internal	Phase Correction	Yes	ξ¥.
View C		Bottom/Up	USER CVS		
# of R	epetitions REST	0	User CV19	0.85	
# of R	epetitions ACTIVE	0	User CV22	1.00	
SAT			TR Min	500.0	
Tag Ty	vpe	None	TR Max	999.0	
	ater Saturation	Fat Classic	MULTI-PHASE		
TRICK	re l		Seperate Series	0	
	On/Off	On	Mask Phase	0	
	Subtract	0	Mask Pause	0	
Auto S		On	DIFFUSION		
			Recon All Images	On	
			CONTRAST		
			Contrast Yes/No	Yes	

AX T1 FS Post

GE Signa Discovery 750 3T knee protocol

PATIENT POSITION	
Patient Entry	Feet First
Patient Position	Supine
Coil Configuration	GEM Flex Medium Array
Plane	SAGITTAL
Series Description	3D Sag PD Cube FS HyperSense test for Brady
SCAN TIMING	
TE	30.0
Number of Echoes	1
TR	1200.0
Echo Train Length	35
Receiver Bandwidth	62.50
IMAGE ENHANCE	
Filter Choice	None
GATING/TRIGGER	
Auto Trigger Type	Off
FMRI	
PSD Trigger	Internal
Slice Order	Interleaved
View Order	Bottom/Up
# of Repetitions REST	0
# of Repetitions ACTIVE	0
SAT	
Tag Type	None
Fat/Water Saturation	Fat Classic
TRICKS	
Pause On/Off	On
Auto Subtract	0
	+

IMAGING PARAMETERS	
Imaging Mode	3D
Pulse Sequence	Cube
Imaging Options	EDR, Fast, FR, ARC, HS
SCAN RANGE	
FOV	14.0
Slice Thickness	0.6
Location per Slab	220
Overlap Locations	0
ACQ TIMING	
Freq	288
Phase	288
Freq DIR	S/I
NEX	1.00
Phase FOV	1.00
Auto Shim	Auto
Phase Correction	No
USER CVS	
User CV5	0.80
User CV12	70.00
User CV22	1.00
MULTI-PHASE	
Seperate Series	0
Mask Phase	0
Mask Pause	0
DIFFUSION	
Recon All Images	On
CONTRAST	
Contrast Yes/No	No

3D Sag PD Cube FS HyperSense test for Brady

An aside about k-space/NEX

- Will not go into k-space in detail in this talk
- Analogy: k-space = chest of drawers [Westbrook 2005]; storage device
 - # drawers = # lines k space to fill
 - # drawers = # phase encoding steps
 - Slice encoding g: which chest of drawers
 - 1 chest per slice
 - Phase encoding g: which drawer to open
 - Frequency encoding g: where to put sock in the drawer

An aside about k-space/NEX

- NEX (# excitations), a.k.a. NSA (# signal averages or acquisitions) = # times each line of k-space is filled
 - Sampled at same slope of phase gradient
 - Slope constant over multiple TRs instead of changing at each TR
- Higher NEX
 - Higher SNR
 - Longer scan time

Getting parameter information

- Image annotations
- DICOM dump
- Scanner
 console be
 nice to your
 technologist

3.5sp ET:13 TE:46.08 TR:4425 EC:1 3thk/ DFOV:140 EA:125	R			L P S MTX:0.420.300.0
FA:125				MTX:0 420 300 0 FFS
Ser Time:07 BW:244.1 KOP W 8333 : L 4	ПР		1-	COR T2 FS CONT KOP MRI KOC
	slice_thickness	DS		
	repetition_time	DS		"4425"
	echo_time	DS		
	number_of_averages	DS		
	imaging_frequency	DS SH		
	imaged_nucleus	IIS		
	echo_numbers magnetic field strength	I DS	1-n 1	
	spacing between slices	DS		"3.5"
	echo train length	IIS		
	percent sampling		1 1	
	percent phase field of view	DS		
	pixel bandwidth	DS		
	device_serial_number	LO		"0000000858657MR6"
44	software_versions	LO		"27\LX\MR Software re
10	protocol_name	LO		
	beat_rejection_flag	CS		
	heart_rate	IS		
	cardiac_number_of_images	IS		
	trigger_window			
	reconstruction_diameter			"140"
	receiving_coil	SH		
	acquisition_matrix	US		0x0000 0
	phase_encoding_direction	CS		
	flip_angle	DS		
	<pre>variable_flip_angle_flag</pre>			
6	sar	DS		"2.5924"

Building and analyzing MR protocols

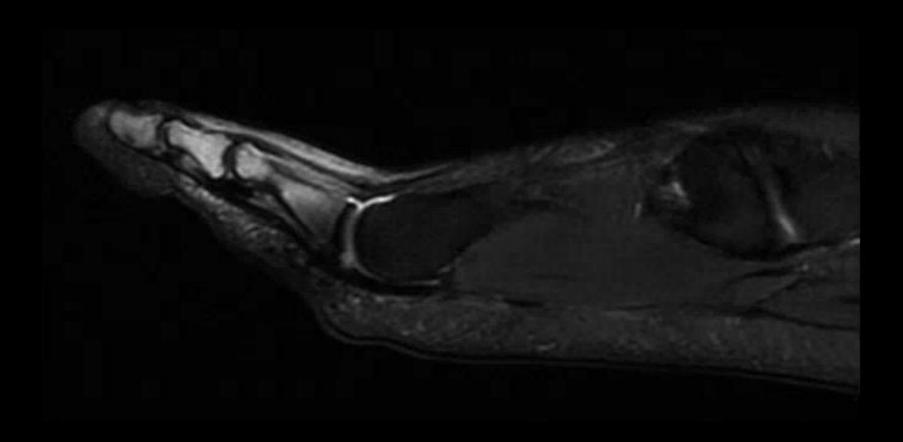
- Different opinions and priorities exist
- Parameters may be pathology dependent and some institutions/practices have specific parameters for different indications
 - ?Chondrocalcinosis or PVNS? Add a GRE sequence
 - ?ACL tear? Add a small FOV coronal oblique
 - ?Infection? Triplanar T1 and STIR; many knee protocols only include 1 true T1

Note on specific modifications

- To maximize SNR on PD FSE FS sequences
 - Beware of using TE >50; may decrease SNR (35-45 optimal
 - Beware of using TR < 3000; may obscure SNR at cartilage-fluid interfaces
- Adjust FOV by patient size and pathology
 - Increase sag/coronal FOV especially if concerned for MCL injury
 - Decrease FOV (to 12 cm or less) in children to increase spatial resolution

Role of vendors

- Get in touch/get to know with local sales representative
- Meet with industry representatives at national meetings
- Have reps come out for troubleshooting or when rolling out new software/protocols/updates


SIEMENS

PHILIPS

Tailoring to the customer

- Remember that you're on the same team as your referrers; discuss their wishes/input in any protocol changes
- Remember that patient satisfaction is important and optimization of protocols will decrease wait-times and decrease motion

Example Case 2: poor fat saturation in a forefoot MRI

Artifacts/troubleshooting

- Poor fat-sat
- Wrap
- Pulsation

ACHING

- Magic angle
- Motion
- 3D artifacts

RadioGraphics

AAPM/RSNA Physics Tutorial for Residents

MR Artifacts, Safety, and Quality Control¹

Jiachen Zhuo, MS • Rao P. Gullapalli, PhD

More on matrices and frequency vs phase encoding directions

- K-space is filled as a matrix through phaseencoding and frequency-encoding steps
- Frequency-encoding, or readout, adds no extra time (where the socks go in the drawer)
 - Is the equal or larger number in the matrix (usually listed first)
 - Chemical shift artifact in this direction
- Phase encoding steps add time (number of drawers)
 - Small number in the matrix
 - Most artifacts in this direction

Coil selection

- A.K.A. surface coils, receiver coils, RF coils, RF antennas, array coils
- Coils can be optimized due to patient size ("load") but this makes them less reliable
 - Now, designed with a specific patient size/habitus in mind
 - Thus, may not perfectly match impedance of a specific patient, leading to loss in coil performance
- Basic types
 - Built in coil (used for spine, brachial plexus, etc.)
 - Dedicated coil

Stoller 2007

Coil selection

- Smaller coils = smaller FOV, limited patient generalizability but improved images
 - Coil diameter smaller = higher SNR
 - Coil diameter smaller = lower noise
- Coils can be general (body coil, cardiac coil) or contoured

Stoller 2007

Coil selection

- Receive only vs transmit/receive
 - Receive-only subject to artifact from adjacent tissues also excited by RF pulse (think wrist imaged in supine)
 - Transmit/receive (example: some knee coils)
 - Improves patient comfort because only AOI is excited
 - Allows higher power locally and overall less energy deposited in patient
 - Enables higher resolution, higher strength imaging while observing SAR limitations

Fat saturation

- CHESS (chemical shift (spectral) selective) or chemical fat-sat: Most common in MSK
- STIR
- Hybrid sequences (example: SPAIR)
- Spatial-spectral (example: water excitation)
- Dixon

CHESS or chemical fat-sat

- Fast, high SNR
- Better at high field strengths
- Good pre-/post- contrast option
- Requires B_o homogeneity
 - Bad in larger FOV
 - Bad with metal
 - Bad with irregular contours and more air-skin surface area (toes/forefoot)
 - Bad with off-center imaging

CHESS or chemical fat-sat

- Basic physics
 - Apply RF pulse then immediate spoiler to null fat's longitudinal magnetization
 - No signal contribution from fat
- Tips/troubleshooting
 - Use smallest coil possible in isocenter; minimize air
 - Increase spectral bandwidth
 - Shorter RF pulse

STIR

- Basic physics
 - Extra 180 degree pulse before conventional SE 90 degree pulse
 - Wait time till 90 degree pulse is "TI" or inversion time which is based on T1 relaxation time of specific tissue
 - TI for fat is approximately 140 msec at 1.5T (100-200) and 205-225 msec at 3T
- Applications
 - Good for the foot
 - Good for edema
 - Good with metal

Dixon

- Created by WT Dixon in 1984
- Exploits the resonance frequencies of water and fat (fat is 220 Hz lower at 1.5T; they will cycle out-of-phase at 2.2 msec and in-phase at 4.4 msec)
- Basic physics for "2-point Dixon"
 - Acquire 2 images: IP and OP
 - Sum then average to get pure water(fat-suppressed)
 - Subtract OP from IP then average to get pure fat (water-suppressed)
- Insensitive to B_o when you do 3- or 4-point Dixon

Summary: fat-sat

Table 1: Advantages and Disadvantages of Different Fat-Suppression Techniques in Musculoskeletal MR Imaging

Technique	Imaging Time	SNR	SAR	Effect of Metal	B _o Sensitivity	B ₁ Sensitivity	Preferred Field Strength
rechnique	Time	SINK	SAK	of Metal	B ₀ Sensitivity		
Chemical fat saturation	Short*	High	Medium	Strong	Sensitive	Sensitive	High
STIR	Long	Low	High	Minimal	Insensitive	Insensitive	Indifferent
SPIR	Long	High	High	Strong	Sensitive	Sensitive	High
SPAIR	Long	High	High	Strong	Sensitive	Insensitive	High
Water excitation	Short	High	Low	Strong	Sensitive	Insensitive	Medium [†]
Dixon	Long	High	Low	Mini- malw	Insensitive (three- or four-point Dixon)	Insensitive	Medium [†]

Source.—Reference 2.

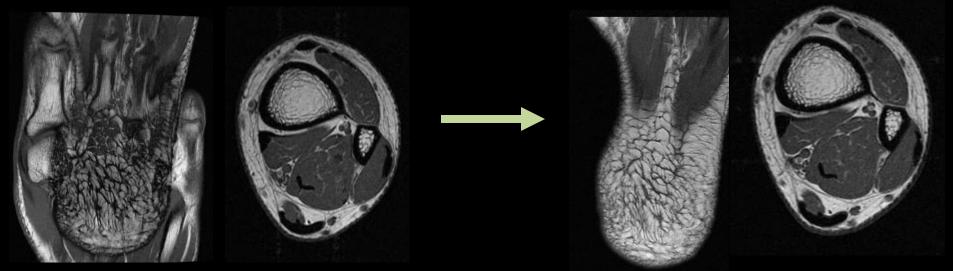
Note.—All other MR imaging parameters should be considered equal. SPIR = spectral presaturation with inversion recovery.

*Depends on the pulse sequence.

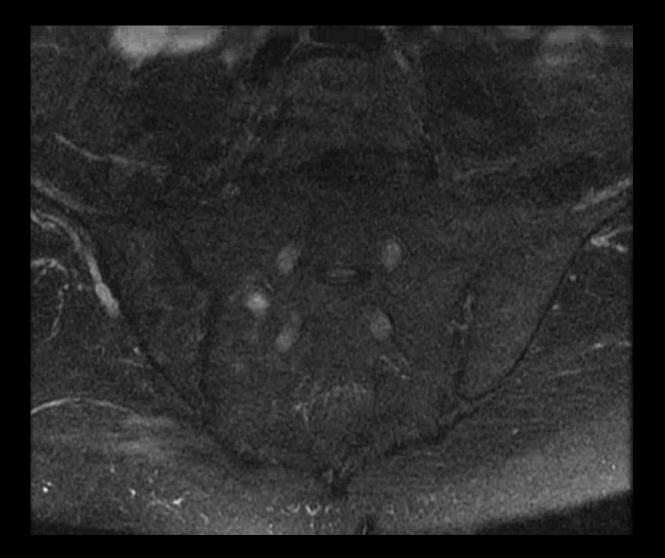
[†]There are advantages and disadvantages at both high and low magnetic field strengths.

Del Grande 2014

Other artifacts/troubleshooting


- Magic angle
 - Tendons at 55 degrees to B_o lose augmented dephasing
 - Because structural anisotropy accelerates T2 signal loss at all other angles making it dark
 - Short TE sequences like GRE, T1 and PD; not seen on true T2 or T2FS
 - Less prominent at 3T
- Pulsation
 - Moving blood in vessels creates ghosting in phase encoding direction
 - Pre-sat bands in adjacent slices
 - Switch phase- and frequency-encoding directions

Other artifacts/troubleshooting


- Motion same class as pulsation
 - Phase-encoding direction
 - Scan prone for anything ventral (lipoma in chest wall, SC joints, clavicle)
 - Blade/propeller sequences
 - K space sampled in rotational, overlapping pattern rather than rectilinear
 - Needs echo-train so standard spin echo sequences don't work

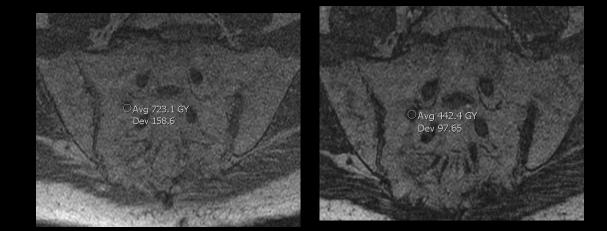
Other artifacts/troubleshooting

- Wrap/aliasing
 - Phase-encoding (frequency already oversampled)
 - Smaller FOV than AOI; excited tissues wraps to other side of image
 - Tips:
 - Increase oversampling or FOV in phase-encoding
 - Switch phase- and frequency- directions

Example Case 3: atypical hemangioma or prostate metastasis?

Tumor imaging beyond T1 and contrast

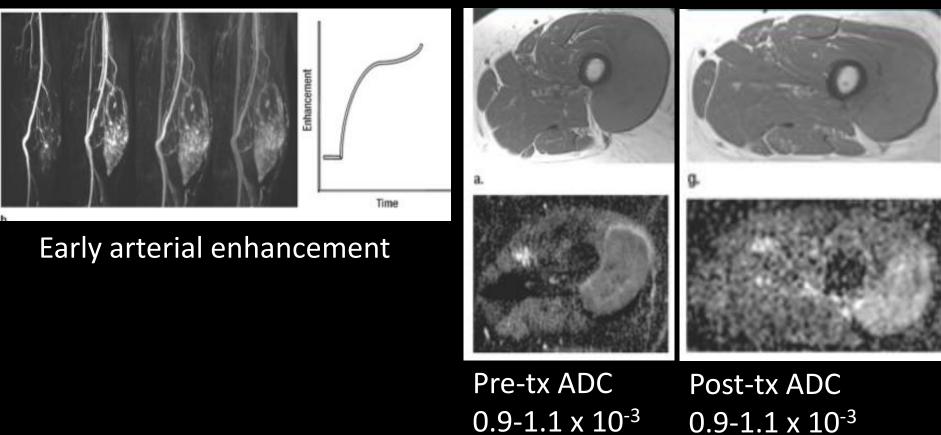
- Consider adding additional sequences
 - Functional imaging
 - Dynamic contrast
 - Diffusion
 - Extra sequences
 - In phase/out-of-phase
 - Subtraction images (especially useful in cases w/ metal)
- Troubleshooting vs standard protocols (institution dependent) - adds a lot of time


Chemical shift imaging

- Exploits the resonance frequencies of water and fat
 - 1.5T: out-of-phase at 2.2/6.6/11.0 msec and in-phase at 4.4/8.8/13.2 msec
 - 3T: out-of-phase at 1.1/3.3/5.5 msec and in-phase at 2.2/4.4/6.6 msec
- Out-of-phase has India ink artifact
- Single voxels containing both microscopic fat and water
 - Will synergize with higher signal in IP
 - "Cancel-out" signal in OOP
 - Tumors replace marrow/fat so will have no signal drop

Chemical shift imaging

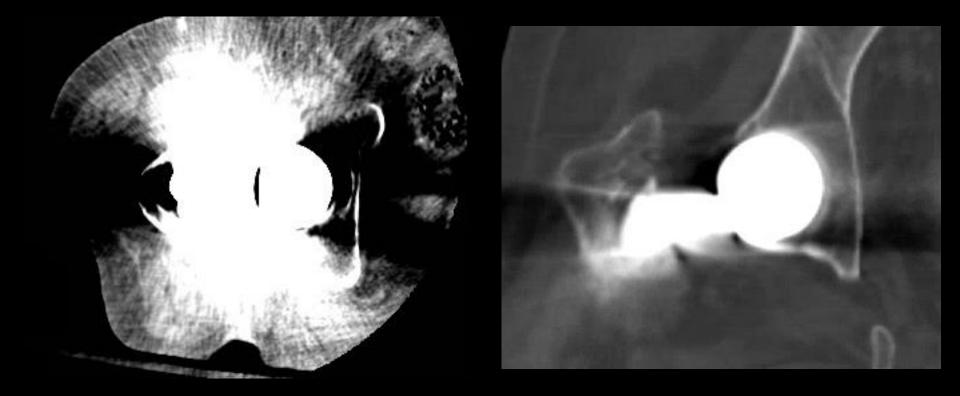
- Benign entities such as hemangioma, marrow edema, red marrow will lose signal
 - Threshhold: 20% drop
 - ROI average in IP image x 0.8 must be less than or equal to OOP: microscopic fat is present
 - Must have water and fat in same voxel (ex: not lipoma)
 - − Example: 723*0.8=578 578>442 Micro fat ✓


Dynamic contrast-enhanced MRI

- Fast GRE sequences after IV gad
- Often volumetric acquisition
- Tradeoff between temporal and spatial resolution
 - Ex: TWIST uses k-space undersampling in the periphery to focus on contrast and sacrifice spatial resolution (10 sec resolution for 5 min total)
- Malignant lesions show early arterial enhancement (first pass kinetics); not very specific

Diffusion-weighted imaging

- Use ADC maps rather than DW imaging to avoid T2-shine-through
- Measures impedance to diffusivity, a surrogate for cellularity within a tumor
- Helpful with treatment change (less cellular if necrotic)
- Shi et al. showed ADC values
 - Cutoff of <a>> 0.89 x 10⁻³ mm²/sec for typical hemangiomas vs mets had 67% sensitivity, 66 % specificity


DCE and DWI

0.9-1.1 x 10 mm²/sec $0.9-1.1 \times 10^{-3}$ mm²/sec

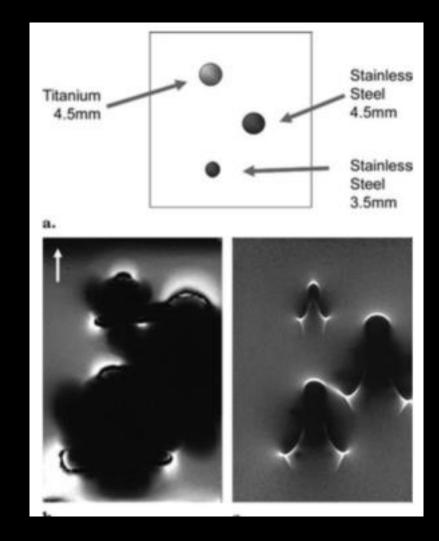
Fayad 2012

Example Case 4: concern for periprosthetic fracture with hemiarthroplasty; CT limited

Transmitter vs. receiver bandwidth

- Bandwidth: range of frequencies (Hz)
- Transmitter(tBW): related to RF pulse
- Receiver (rBW): more commonly discussed; signal reception

Receiver bandwidth


- rBW selected by operator
- Refers to range in frequency-encoding direction
- Usually range from 5-100 kHz (typical 50 kHz)
 - GE reports as total BW
 - Siemens/Toshiba report BW per pixel (ie. Divided by N_f)
 - Ex: 50,000 Hz/256 pixels = 196 Hz/pixel
- BW spread out among pixels. Pixel width = FOV (frequency direction)/N_f (# frequency encoding steps)

Metal implants and MRI

- Metal has no protons
- Alters local magnetic field in all planes
- At the site of metal, causes:
 - Higher spin frequency in adjacent protons
 - Local magnetic field "coded" as if it were higher gradient than it should be and displaces
 - Causes signal loss (void on the image) and displacement
- Displaced signal stacks with adjacent signal, becomes hyperintense in these areas as "pileup"

Metal implants and MRI

- Different types of metal and size of metal affects degree of artifact
- Stainless steel and cobalt chromium (often in hemiarthroplasty) are worse than titanium
- Ceramic usually has among lowest artifact
- Would help to know type of metal prior to protocoling but usually not known/too time intensive

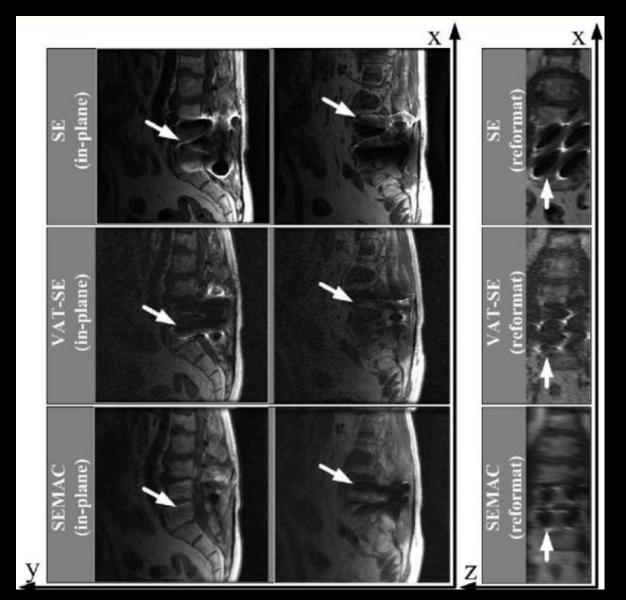
MARS MRI step 1

- Can use STIR or Dixon for fat sat
- Can increase rBW- larger region excited and while signal displacement is the same, less pixels are displaced
 - 500-600 Hz/pixel at 1.5T
 - 700-800 Hz/pixel at 3T
- MARS vendor sequences (e.g. WARP by Siemens) have optimized RF pulses, high rBW, better STIR sequences
- Image on 1.5T
- Smaller FOV, higher resolution matrix, thinner sections, increased echo train length,

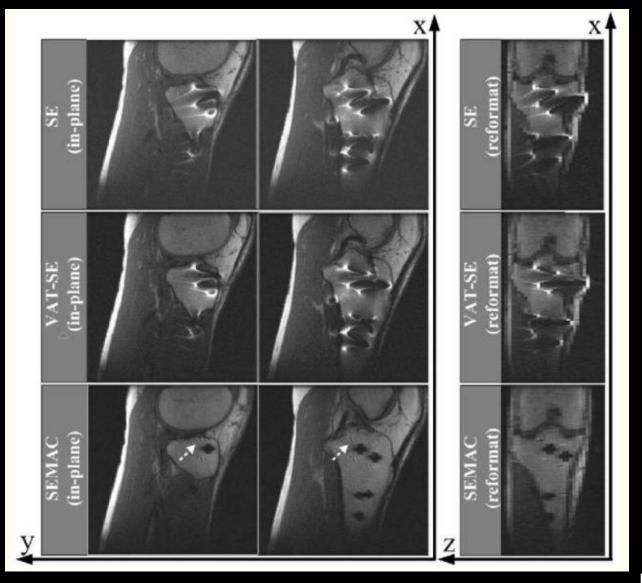
MARS MRI step 2: VAT

- VAT = View Angle Tilting
- Different, oblique readout (freq-encoding plane) that incorporates a component that is in slice selection plane
- Result: re-registers off-resonant (distorted) spins by metal to correct location in readout direction
- Because: if both readout and slice selecting gradient active at same time, it will align off-resonant spin to slice-selecting frequency
- OVERALL: addresses in-plane distortion
- STILL have through-plane distortion

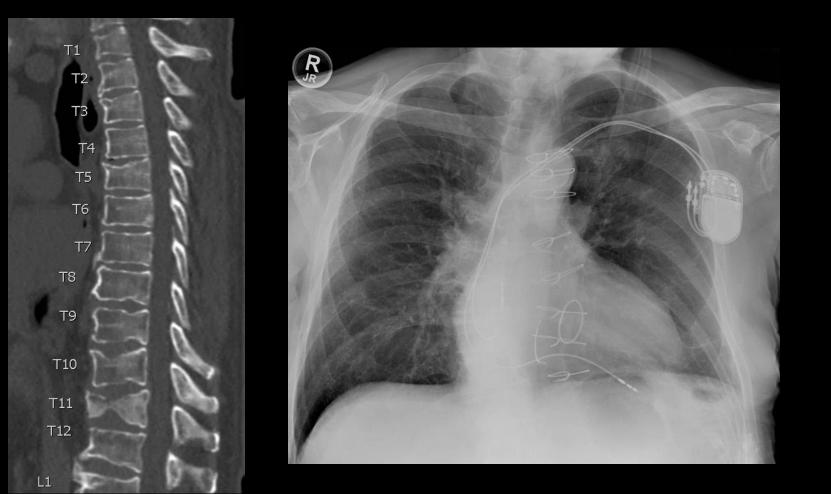
MARS MRI step 3: SEMAC


- Still have artifact? Need to see more detail? Have a stainless steel or cobalt-chromium implant?
- SEMAC (Slice encoding for metal artifact correction)
- Longer (2x scan time), FDA-approved sequence created by Stanford (Dr. Brian Hargreaves)
- Need specific software

MARS MRI step 3: SEMAC


- Essentially, is VAT *plus* extra phase encoding gradients in multiple directions to figure out phase of off-resonant spins
 - Number of SEMAC steps (phase encoding steps) is adjustable; more = better image quality
- Makes 3T viable for MARS; very similar between 1.5 and 3T, except longer scan time with 3T

MARS MRI comparison



Lu 2010

MARS MRI comparison

Example Case 5: age of spinal compression fractures; unknown pacer

Dual energy CT (DECT)

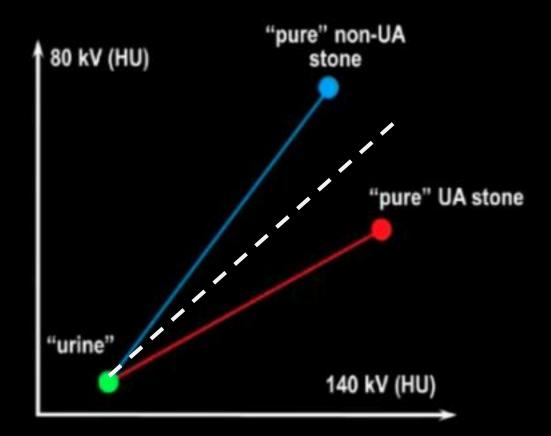
- Sometimes called spectral CT (though this is now more appropriate for multi-energy (>2 energies) CT)
- Standard CT utilizes 1 polychromatic beam (tube max = kVp), typically around 120 kVP with 1 source tube, 1 detector, 1 scintillator at the detector
- DECT exploits property that different beam energies will be attenuated differently in the same material based on how much the photon energy exceeds k-edge (inner shell e- binding energy)

Dual energy CT (DECT)

Rotate-rotate (Toshiba) Dual Source (Siemens)

Rapid kVp switching (General Electric) Sandwich detector (Philips)

Twin beam (Siemens)



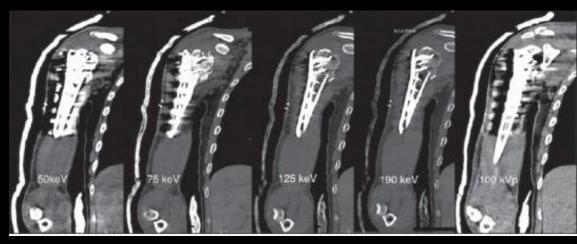
Photon Counting

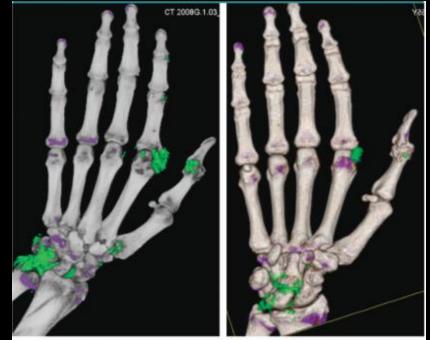
Courtesy of Ben Yeh, UCSF

Sahant 2016

DECT

VNC (virtual non calcium) DECT for marrow edema

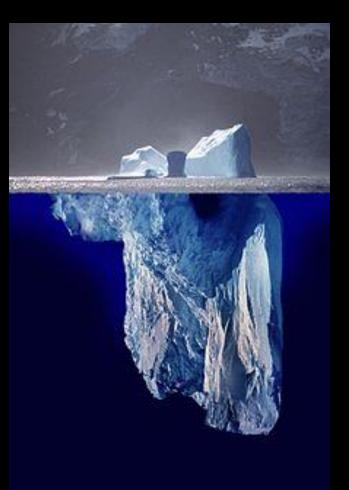

- Sensitivity 96%, specificity 98% for BME in spine in one study (Wang 2013)
- Reader-dependent sens 72%, spec 70% for BME in spine in recent study (Diekhoff 2019)


Khanduri 2017

Other applications: MARS CT, gout

 Reconstructed monoenergetic spectrum images for MARS (Khanduri 2017)

 Quantification/ identification of uric acid and treatment response (Glazebrook 2011)



DECT challenges

- Need premium scanner equipment
- No extra reimbursement
- CT techs need additional training
- More data-storage vs sent to PACs
 - Expensive storage how long
 - More images for radiologist to review
- Usually need separate viewer (e.g. SyngoVia) and software packages for post-processing
- Poor 3rd party integration/transferability to outside PACs

Summary

- Understanding some practical MRI physics will help you be a better radiologist and asset to your practice/patients
- It takes work to understand the physics but it is achievable and many resources are available
- The more you know, the more interesting it will be!

Additional tools

- ISMRM: https://www.ismrm.org/resources/mr-sites/
- RSNA
- Great on-demand webcasts with detailed talks on DECT and MARS MRI: <u>https://appliedradiology.com/Webcasts/on-demand-webcasts</u>
- Dr. Brian Hargreaves (recommended by Dr. Chung!): Basic MRI: <u>http://med.stanford.edu/bmrgroup/education/mri-physics.html</u>
- Dr. Brian Hargreaves (recommended by Dr. Chung!): More focused topics including SEMAC: http://med.stanford.edu/bmrgroup/education.html
- Ctisus.com dual energy CT protocols and short educational lectures, but greater emphasis on body/chest general protocols and 3D CT techniques
- Basic and in-depth common Q&A of radiologists from MIR professor: <u>http://mriquestions.com/index.html</u>
- Protocol pages from individual institutions (e.g. <u>Jefferson</u>, <u>U</u> <u>Wisconsin-Madison</u>, <u>Hopkins CT</u>)

Recommended readings

- AAPM/RSNA physics tutorials for residents in Radiographics
 - Example: <u>MRI imaging brief overview/emerging</u> <u>applications by Jacobs in 2007</u>
- Intro text: Hashemi's <u>MRI: The Basics</u>
- Comprehensive (also available in electronic version at UCSD library): Brown's <u>MRI: Physical Principles and Sequence Design</u>
- Bernstein's <u>Handbook of MRI Pulse Sequences</u> (also available in electronic version at UCSD library)

References

- Bitar R et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 2006;26(2):513-537.
- Del Grande F et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014;34(1):217-234.
- Diekhoff T et al. Single-source dual-energy computed tomography for the assessment of bone marrow oedema in vertebral compression fractures: a prospective diagnostic accuracy study. European Radiology 2019;29:31-39.
- Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic techniques. Radiology 2012;265(2):340-356.
- Glazebrook KN et al. Identification of intra-articular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology 2011;261(2):516-524.
- Grajo JR, Patino M, Prochowski A, Sahani DV. Dual energy CT in practice: basic principles and applications. Applied Radiology 2016:6-12.
- Jacobs MA, Ibrahim TS, Ouwerker R. MR imaging: brief overview and emerging applications. Radiographics 2007;27(4):1213-1229.
- Khanduri S et al. The utility of dual energy computed tomography in musculoskeletal imaging. J clin imaging sci 2017;7:34.
- Kurtz S et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. JBJS 2007;89(4):780-785.
- Lee MJ et al. Overcoming artifacts from metallic orthopedic implants at high field-strength MR imaging and Multi-detector CT. Radiographics 2007;27(3):791-804.
- Leng, S. Dual Energy Ct in Clinical Routine: Principles, methods, and dose. Applied Radiology/Siemens Healthineers webinar on Demand. http://event.on24.com/wcc/r/1412880/E9C9DDFF5C4FCA3C295992DC2AA2CA5E
- Lu W, Pauly KB, GE Gold, Pauly JM, Hargreaves BA. SEMAC: Slice encoding for metal artifact correction in MRI. Magn Reson Med 2009;62(1):66-76.
- Runge VM, Nitz WR, Trelles M, Goerner FL. The Physics of Clinical MR Taught Through Images. Thieme. 2014 (3rd ed).
- Sahant D. Dual Energy CT technologies. SBCTMR lecture 2016. http://www.scbtmr.org/Portals/9/2016%20Syllabus/New%20DECT%20Techniques_Sahani.pdf?ver=2016-09-14-170355-823
- Shi YJ et al. Differential diagnosis of hemangiomas from spinal osteolytic metastases using 3.0T MRI: comparison of T1-weighted imaging, chemical-shift imaging, diffusion-weighted and contrast-enhanced imaging. Oncotarget 2017;8(41):71095-71104.
- Stoller, DW et al. Magnetic Resonance imaging in orthopaedics and sports medicine. Lippincott Williams & Wilkins. 2007(3rd ed).
- Wang CK et al. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 2013;269(2):525-533.
- Westbrook C, Roth CK, Talbot J. MRI in Practice. Wiley-Blackwell. 2005(3rd ed).
- Westbrook C et al. Handbook of MRI technique. Blackwell Publishing. 2008 (3rd ed).
- Zhuo J, Gullapalli RP. MRI artifacts, safety, and quality control. Radiographics 2006;26(1):275-297.