James Buratto May 20th, 2010

Cervical Spine Trauma

Objectives

- Discuss relevant anatomy
- Discuss methods for clinical triage
- Discuss imaging
- Discuss fracture types in the cervical spine
- Discuss classification systems

Injuries

- ~150,000 injuries to the spinal column per year in North America.
- A majority of these are cervical
- Most are related to motorized accidents or falls resulting in bony or soft tissue injuries
 A relatively broad range of injury patterns can be seen because of the complex anatomy that allows for a wide range of motion in the cervical spine

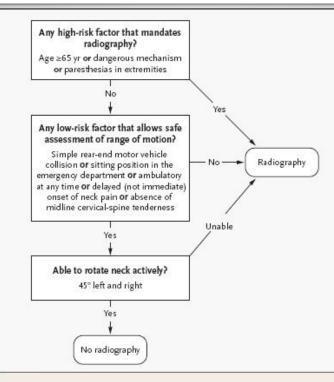
- Bimodal age distribution
- 15-24 y.o. usually secondary to high energy trauma such as MVC, ATV, PED vs AUTO (trolley, scooter, etc.)
- > 55 (Older folks!) usually secondary to low energy trauma such a fall
 Cord involvement is related to the mechanism and possibly underlying pathology such as central spinal canal
 - stenosis

Location

- The subaxial spine accounts for a majority of fractures and dislocations
- Craniocervical injury are less common but are more frequently associated with fatal motor vehicle accidents
- Reportedly cervical spine injuries can be seen in over 1/5 of fatal motor vehicle accidents with large majority being in the craniocervical junction

Clinical Assesment

There are two major methods for clinical assessment and potential clearing of the cervical spine in the setting of trauma
Most are based on being utilized on a patient who is not obtunded or altered


NEXUS - low risk

- No midline cervical tenderness
 No focal neurological deficit
- Normal alertness
- No intoxication
- No painful distracting injury

Canadian c-spine rules

- Is there any high risk factor that mandates imaging?
- Is there any low risk factor that allows safe evaluation of neck range of motion?
- Is the patient able to actively rotate the neck 45 degrees to the left and right?
- Can be applied to alert, stable patients

Canadian c-spine rule

Figure 1. The Canadian C-Spine Rule.

For patients with trauma who are alert (as indicated by a score of 15 on the Glasgow Coma Scale) and in stable condition and in whom cervical-spine injury is a concern, the determination of risk factors guides the use of cervical-spine radiography. A dangerous mechanism is considered to be a fall from an elevation ≥ 3 ft or 5 stairs; an axial load to the head (e.g., diving); a motor vehicle collision at high speed (>100 km/hr) or with rollover or ejection; a collision involving a motorized recreational vehicle; or a bicycle collision. A simple rear-end motor vehicle collision excludes being pushed into oncoming traffic, being hit by a bus or a large truck, a rollover, and being hit by a high-speed vehicle.

Canadian c-spine rule

High risk criteria

- Age >65
- Dangerous mechanism
- Fall from 1 meter (5 stairs)
- Axial load to the head
- Motor vehicle collision at high speed >60mph
- Rollover or ejection
- Motorized recreational vehicles
- Bicycle collision
- Presence of paraesthesia in extremities
- Low risk criteria
 - Simple rear end collision
 - Sitting position in the emergency room
 - Ambulatory at any time
 - Delayed onset of neck pain
 - Absence of midline cervical spine tenderness
- Radiographs versus CT
 - Typically the break point is a >5% risk of CSI however there is some debate about the criteria for defining high risk
 - It is not uncommon for sites to use CT in the setting where patients cannot be clinically cleared

Other validated high risk criteria

- Focal neurological deficitSevere head injury
 - unconscious, skull fracture, intracranial hemorrhage
- High energy mechanism
 - MVC speed> 35mph
 - auto vs. pedestrian
 - death at scene
 - pelvic fracture

Hanson, et al, AJR 2000:174:713-718

Imaging

- Many still won't clear without any imaging
- Studies have shown the higher sensitivity of CCR (100%) and NEXUS
- Radiography sensitivity <95% on the high end</p>
- CT has been shown to be cost effective and the modality of choice in moderate and high-risk patients with a >5% risk of CSI or for evaluating suspicious or poorly evaluated areas
- The definition of high-risk is variable
- Some suggest CT replace radiography entirely

Blackmore et al

- <u>High</u> (fracture risk of 11.2%) = severe head injury, focal neuro deficits, >50 yrs w/ high-energy mechanism of injury.
- Moderate (4.2%) = >50 yrs w/ a moderate-energy mechanism or <50 w/high energy.</p>
- Low (2.1%) = <50 w/ moderate energy mechanism of injury
- Blackmore et al found c- spine screening with CT is cost effective for High and Moderate risk patients
- Low risk pts should undergo radiography or no imaging

Imaging

- Flexion and extension views can be utilized to evaluate for instability
- Should be considered in those with persistent symptoms and normal radiographs or CT
- 10-14 day delay is suggested but not universal
 MRI can be used in the more acute setting to detect ligament or cord injury especially in the setting of a neurologic deficit

Anatomy

- The cervical spine consists of two distinct regions
 - Craniocervical junction occitput, C1 and C2
 - Lower cervical spine C3-C7
- C2-3 is a considered a transitional region
 Injury patterns in the lower cervical spine are characterized into groups
- This same approach is considered to have limited application in the craniocervical junction

Three Column Theory of Denis

Spinal column
 divided into an
 ANTERIOR, MIDDLE
 and POSTERIOR
 column.

Injury to one column is stable, two or three are unstable.

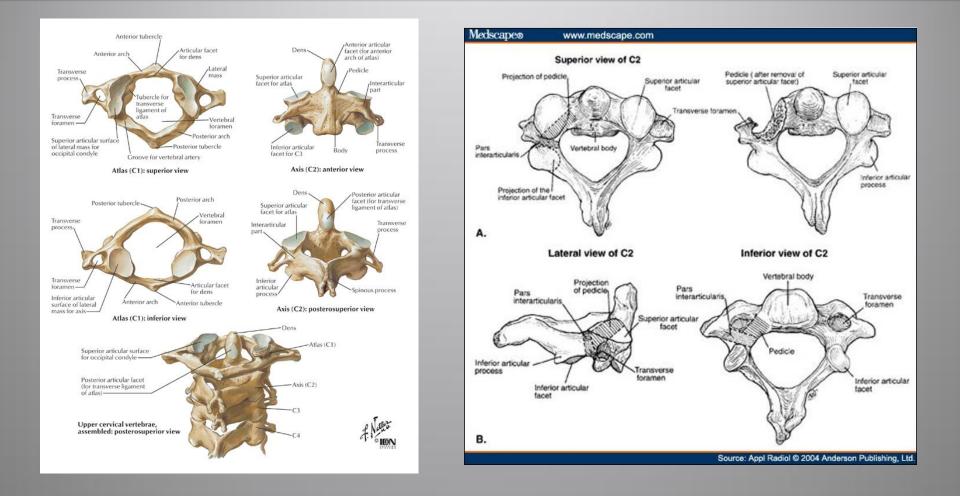
ANTERIOR COLUMN

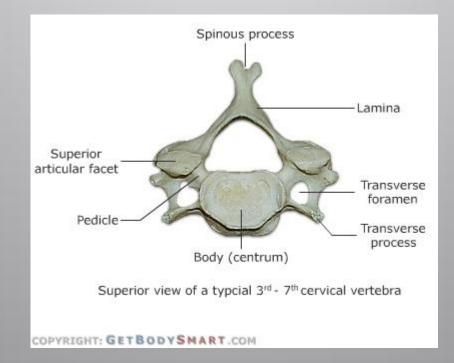
 The anterior longitudinal ligament, anterior 2/3 of the vertebral body and disc

MIDDLE COLUMN

 Posterior longitudinal ligament and posterior 1/3 of the vertebral body and disc

POSTERIOR COLUMN

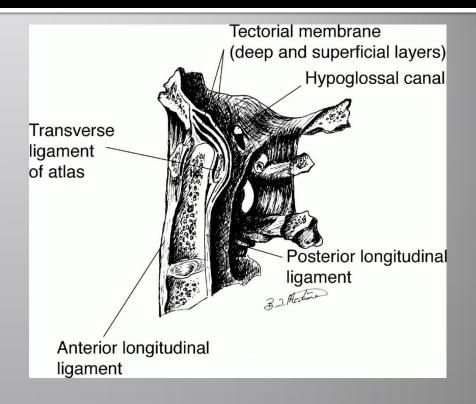

 The posterior osseous arch and ligaments

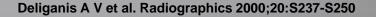

DOES IT WORK?

- If two or three columns injured, lesion is unstable
- Works well for C3 to T1
- Does not work so well for C1-2, so consider most or all injuries here unstable

Craniocervical junction

Typical cervical vertebral body

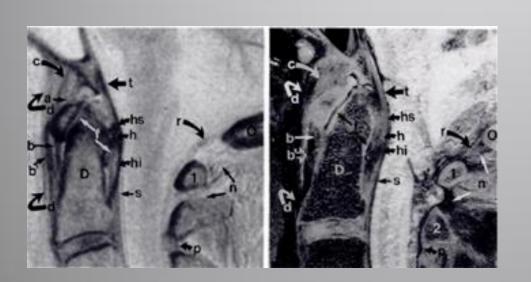



Craniocervical Articulations

- Middle or median (posterior and anterior) atlantoaxial joints which consists of two synovial compartments
- Atlantooccipital joints-paired
- Lateral atlantoaxial joints-paired
- All are true synovial joints with hyaline cartilage and prominent lax capsules
- These allow rotation of C1 around C2

Articulations

- These articulations are held together and supported by an array of ligamentous structures considered internal and external craniocervical ligaments
- These ligaments provide a large portion of the stability in the craniocervical junction
- Probably more so than the
 combined ligamentous and
 osseous stabilizers found in the
 lower cervical spine



Critical structures

- Tectorial Membrane a continuation of the posterior longitudinal ligament
- Alar ligaments extend from the superior lateratal dens to the medial aspect of the occipital condyle
- Transverse ligament transverse portion of the cruciate ligament
 - Others anterior longitudinal ligament, anterior atlantoaxial and atlantooccipital ligaments, superior and inferior fasciculi of the cruciform
- ?Lateral atlantooccipitial ligament –of interest as it suspected to provide stability but not well studied

Complex craniovertebral anatomy

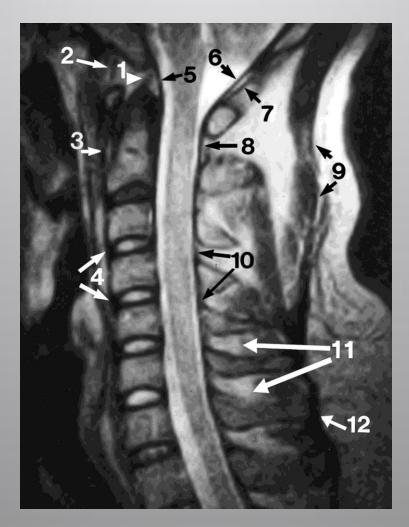
Schweitzer, M E et al AJR 158:1087-1090

Key to Abbreviations Used in Figures

- a alar ligaments
- b anterior atlantoaxial ligament (deep portion)
- b' anterior atlantoaxial ligament (superficial portion)
 - anterior atlantooccipital membrane
- C clivus

С

- d anterior longitudinal ligament
- D dens (odontoid process)
- e apical ligament (in fat)
- f articular cartilage
- g atlantooccipital ligaments
- h transverse ligament of atlas
- hi inferior longitudinal fasciculus of cruciform ligament
- hs superior longitudinal fasciculus of cruciform ligament
- i capsule of anterior median atlantoaxial joint
- k capsule of atlantooccipital joint
- I capsule of lateral atlantoaxial joint
- m capsule of posterior median atlantoaxial joint
- n interspinous ligament
- O occiput


D

r

S

- ligamenta flava
- posterior atlantooccipital membrane
- posterior longitudinal ligament
- t tectorial membrane
- V vertebral artery
- 1 atlas (C1)
- 2 axis (C2)

Anatomy

Benedetti, P. F. et al. Am. J. Roentgenol. 2000;175:661-665

Anatomy

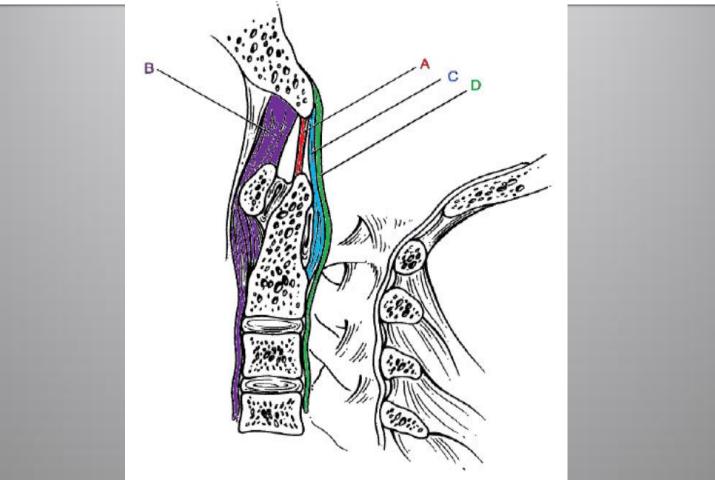
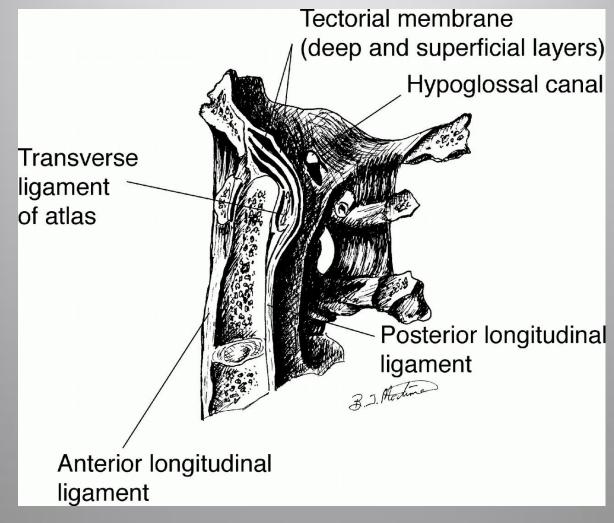
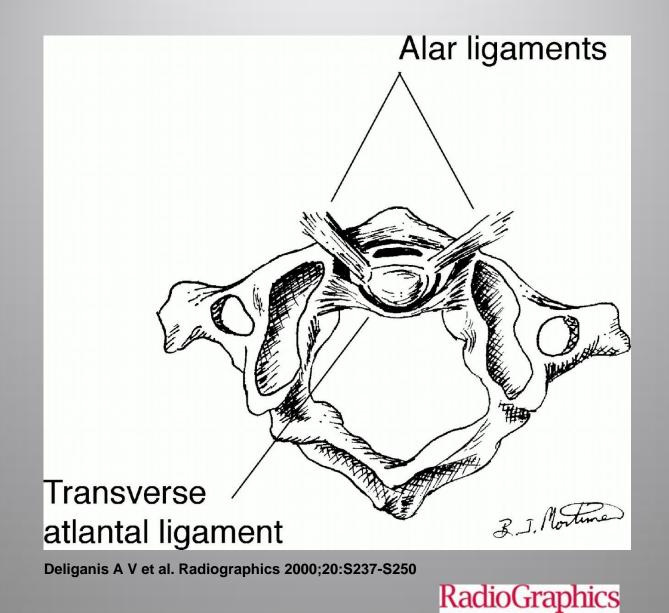
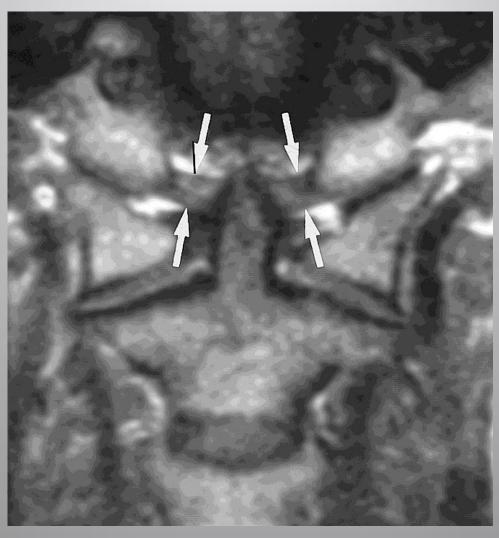
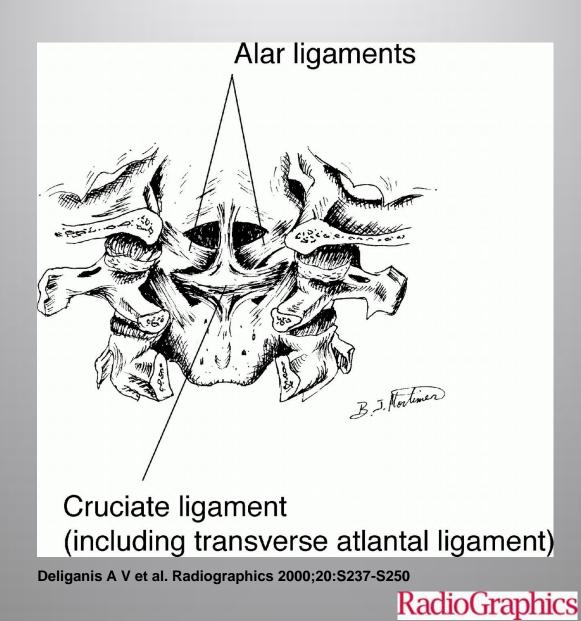




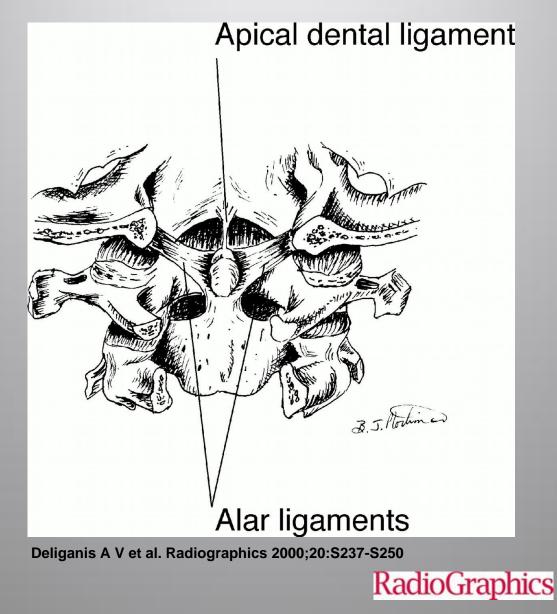
FIG. 2. Drawing depicting the midsagittal view of the craniocervical junction. A: Apical ligament. B: Anterior atlantooccipital membrane. C: Superior crus of the cruciform ligament. D: Tectorial membrane.

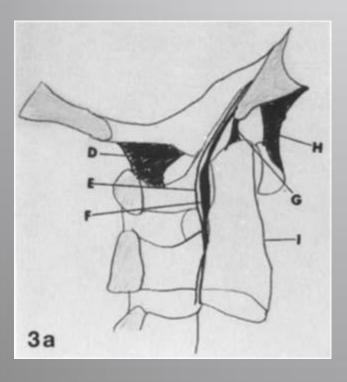


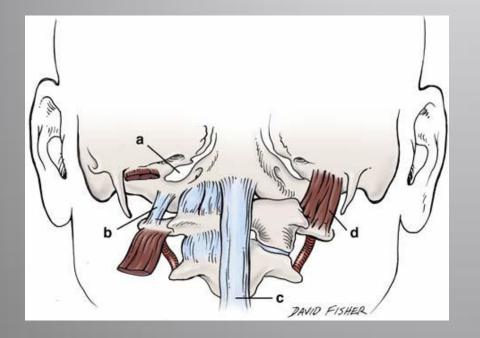
RadioGraphics

Deliganis A V et al. Radiographics 2000;20:S237-S250



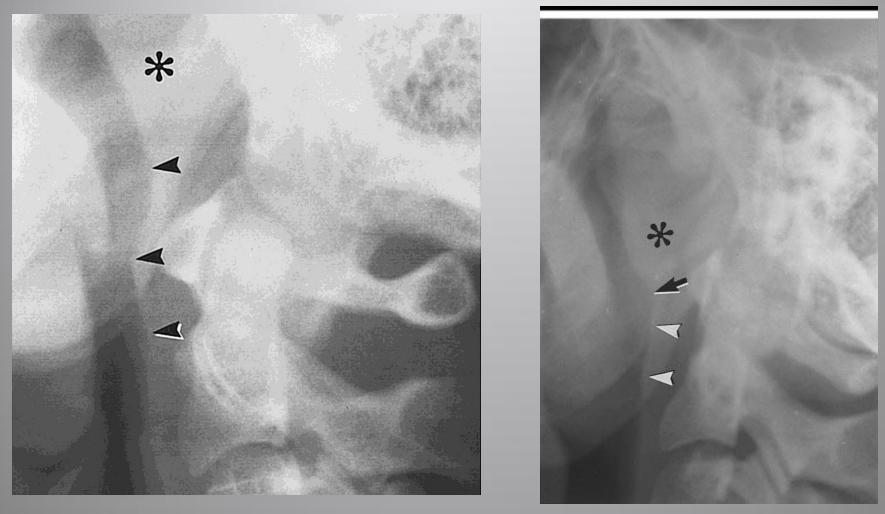

Coronal T1-weighted spin-echo MR image (350/15) in a 29-year-old asymptomatic woman.


Pfirrmann C W A et al. Radiology 2001;218:133-137


More anatomy

Bloom A I, et al Pediatric Radiology 26: 786-790

Lateral Atlantooccipital Ligament


- LAO –may be important in craniocervical stability, primarily in the inhibition of the lateral flexion of the head
 - Not well studied
 - Situated lateral to the anterior atlantooccipital and atlantoaxial ligaments

Tubbs SR, et al Surg Radiol Anat (2007) 29:219–223

Alignment and Relationships

(a, b) Contact lateral radiographs show normal cervicocranial prevertebral soft-tissue contour (arrowheads) in two adults. On right normal contour of adenoidal soft tissues.

Harris J H Radiology 2001;218:337-351

Figure 2. Normal relationships within the craniocervical junction.

TABLE 3. Normal Dimensions of the Craniocervical Junction at Lateral Radiography

Anatomic Location	Dimensions			
Basion-dens interval	<12 mm			
Basion-posterior axial line interval	<12 mm posterior to dens, <4 mm anterior to dens			
Prevertebral soft tissues	<6 mm at C2, flat or concave			
Anterior atlanto-dens interval	<2 mm			
Lateral atlanto-dens interval	<2-3-mm side-to-side difference			
Atlanto-occipital articulation	1-2 mm			
Atlantoaxial articulation	2-3 mm			

Figure 2. Normal relationships within the craniocervical junction.

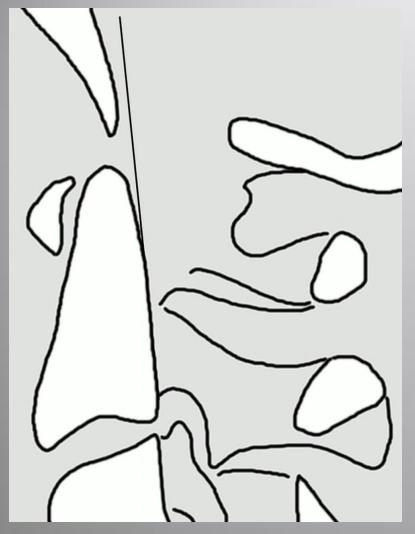


TABLE 3. Normal Dimensions of the Craniocervical Junction at Lateral Radiography

Anatomic Location	Dimensions			
Basion-dens interval	<12 mm			
Basion-posterior axial line interval	<12 mm posterior to dens, <4 mm anterior to dens			
Prevertebral soft tissues	<6 mm at C2, flat or concave			
Anterior atlanto-dens interval	<2 mm			
Lateral atlanto-dens interval	<2-3-mm side-to-side difference			
Atlanto-occipital articulation	1-2 mm			
Atlantoaxial articulation	2-3 mm			

Figure 2. Normal relationships within the craniocervical junction.

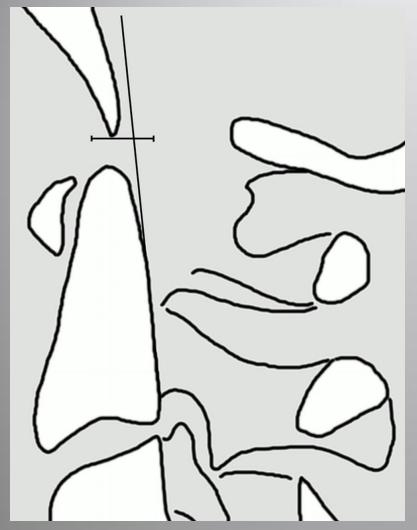


TABLE 3. Normal Dimensions of the Craniocervical Junction at Lateral Radiography

Anatomic Location	Dimensions			
Basion-dens interval	<12 mm			
Basion-posterior axial line interval	<12 mm posterior to dens, <4 mm anterior to dens			
Prevertebral soft tissues	<6 mm at C2, flat or concave			
Anterior atlanto-dens interval	<2 mm			
Lateral atlanto-dens interval	<2-3-mm side-to-side difference			
Atlanto-occipital articulation	1-2 mm			
Atlantoaxial articulation	2-3 mm			

Powers ratio

Fig 3. Nidsagittal MDCT image of the cranicocevical junction demonstrates the Powers ratio, which is calculated by dividing the distance between the tip of the basion to the spinolaminar ine by the distance from the tip of the coisthion to the midpoint of the posterior aspect of the anterior arch of C1. Power's Ratio (Powers etal, 1979)
Basion-Post. C1 arch divided by Opisthion-Ant. C1 arch

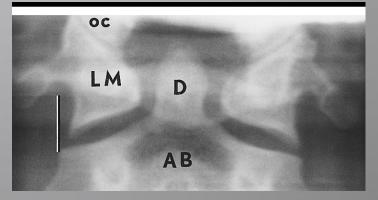
<0.9 normal (1 s.d. below lowest case of AOD) ≥ 0.9 & <1 7% normal ≥ 1 All AOD

CT values versus CR values

Table 1: Normal anatomic relationships of the craniocervical junction on NDCT in 200 patients and comparison with accepted values on plain radiographs*

Nean	SD	Range	MDCT Normal Value [†]	Plain Radiograph Normal Value ^{2,5,8}
3.4	4.64	-8.7-26.0	Notreliable	<12.0
5.7	1.39	1.4-9.1	≪5	<12.0
0.8	0.08	0.6-1.2	≪.9	<1.0
1.3	0.37	0.5-2.4	<2.0 in bith sexes	<3.0 men
				<2.5 women
1.0	0.23	0.5-1.8	<1.4	No data in adults
	3.4 5.7 0.8 1.3	5.7 1.39 0.8 0.08 1.3 0.37	3.4 4.64 -8.7-26.0 5.7 1.39 1.4-9.1 0.8 0.08 0.6-1.2 1.3 0.37 0.5-2.4	3.4 4.64 8.7-26.0 Notreliable 5.7 1.39 1.4-9.1 <5

Note:--MDCT indicates multidetector row CT; BAI; basion-axial interval; BDI, basion-dens interval; ADI, atlantodental interval; AOI, atlanto-occipital interval.


*Results are given in millimeters with the exception of the Powers ratio.

Rojas et al. Reassment of the Craniocervical Junction. American Journal of Neuororadiology 28:1819-1823. 2007.

Lateral masses

- Must align exactly
- If there is 1-2mm of lateral displacement on one side there must be equal medial displacement on the contralateral side to call it rotational
 - There can be significant variability in the appearance here depending on head position and rotation
- With extreme rotation there can be narrowing or vertical approximation of the interspace between the lateral masses

Harris J H Radiology 2001;218:337-351

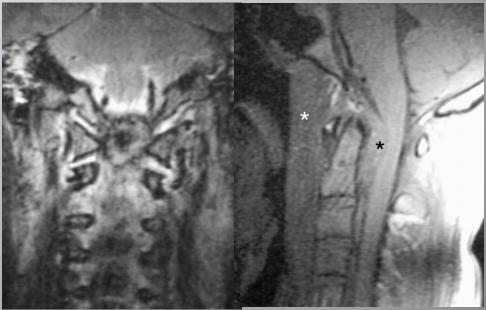
Craniocervical Injuries

- Atlanto-occipital Injuries
- C1 fractures- anterior arch, posterior arch, Jefferson
- C2 fractures dens fractures, traumatic spondylolisthesis, and C-2 body fractures

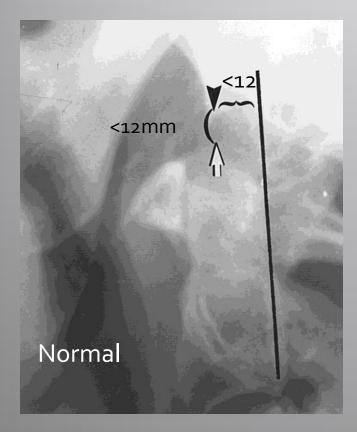
Atlantooccipital dislocation

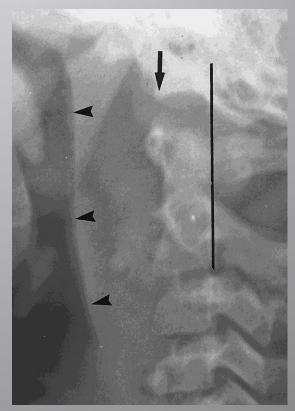
 Werne demonstrated that isolated atlantooccipital dislocation required complete disruption of the tectorial membrane and alar ligaments

Radiographic signs of Atlantooccipital injuries


- Prevertebral soft tissue thickening
- Basion-dens interval
 - >12mm
- Basion-posterior axial line
 - >12mm anterior and 4mm posterior
- CT helps identify fractures that are frequently occult on radiographs including fractures of the basion
- CT can show subtle widening of the atlantoocciptial and atlantoaxial articulations
- MR can depict ligamentous injury, cord injury or compression from developing hematoma

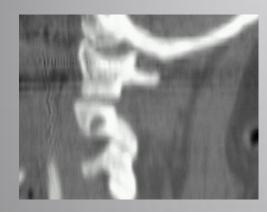
Deliganis A V et al. Radiographics 2000;20:S237-S250


Atlantooccipital

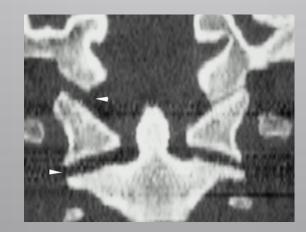

- Findings can be occult on radiography
- MRI can help depict soft tissue injury
- This case shows subtle increased fluid in atlantooccipital and atlantoaxial articulations
- Developing prevertebral thickening and hematoma impinging the cord
- It has been recognized that prevertebral soft tissue thickening may be absent on initial imaging if performed very early

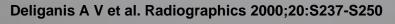
Occipitoatlantal subluxation

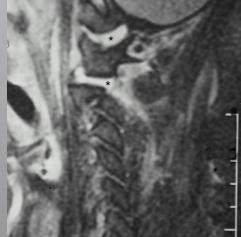
Subluxation can be subtle and patients can survive so it must be recognized
 Abnormal basion-axial interval and/or basion-dental interval, both >12mm



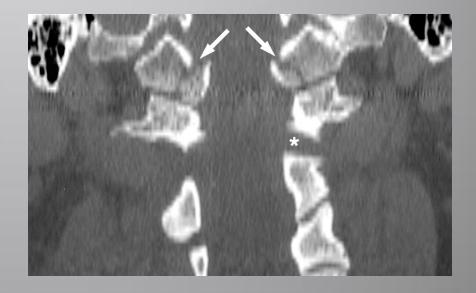
Harris J H Radiology 2001;218:337-351


Atlantooccipital subluxation




Atlantooccipital subluxation

Occipital Condyle fractures

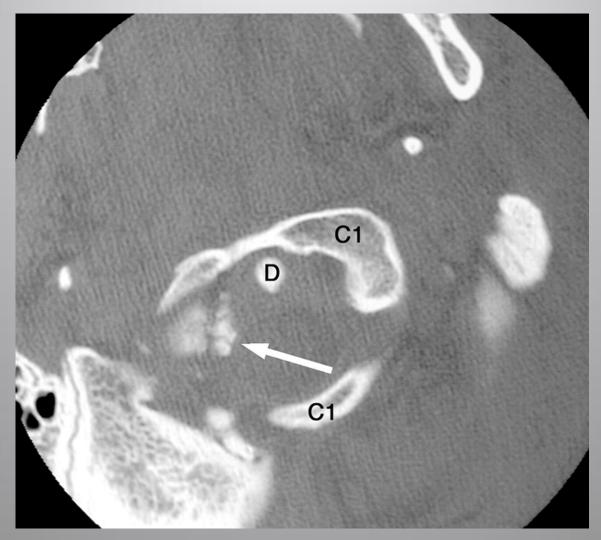

- Three types classified by Anderson and Montesano
- Type I
- split or comminution secondary to axial forces
 Type II
 - extension of an occipital bone fracture into the condyle
 - Type III
 - avulsion fracture at the medial surface of the condyle where the alar ligament attaches

Occipital Condyle fractures

- Can be associated with instability of the occipitoatlantolaxial joint complex
- Tectorial membrane and alar ligaments are critical components
- Tectorial membrane limits extension at the occipitoatlantal joints
- Alar ligaments limit lateral tilt and rotation
 Can be associated with lower cranial nerve palsies, in particular CNXII due to fracture extension into the hypoglossal canal

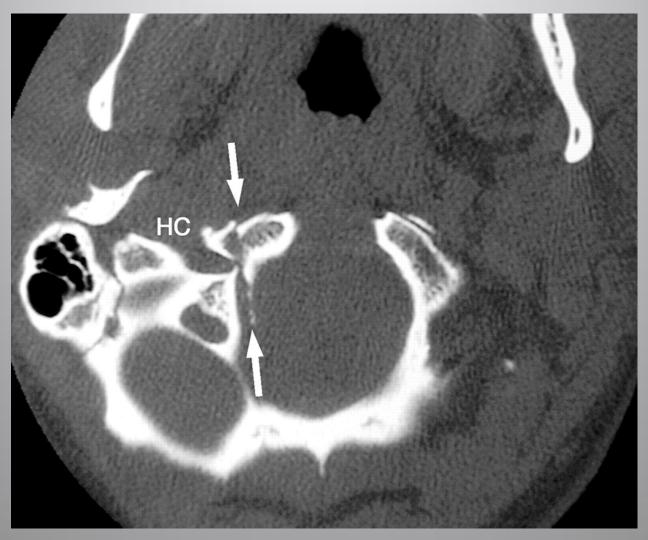
Occipital Condyle Fractures-Type III

- Hansen et al suggested subdividing Type III fractures into stable and unstable
- Bilateral occipitoatlantoaxial joint complex injury –
 - bilateral occipital condyle fractures or unilateral occipital condyle fracture with contralateral widening of the occipitoatlantal [>2 mm]
 - Atlantoaxial joint widening of >3mm
 - Either criteria can be used as a marker for instability

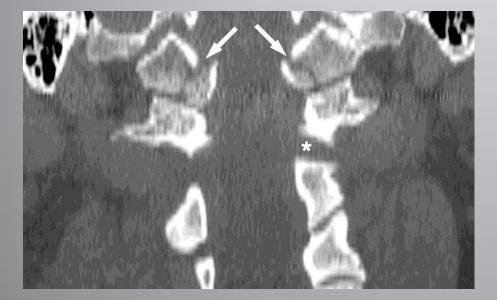


Hanson, J. A. et al. Am. J. Roentgenol. 2002;178:1261-1268

Type I Occipital condylar fracture with ipsilateral fracture of the mass of C1


Harris J H Radiology 2001;218:337-351

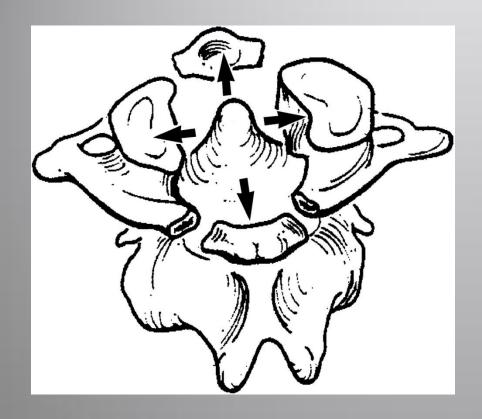
Hanson, J. A. et al. Am. J. Roentgenol. 2002;178:1261-1268


19-year-old man injured in motor vehicle crash

Hanson, J. A. et al. Am. J. Roentgenol. 2002;178:1261-1268

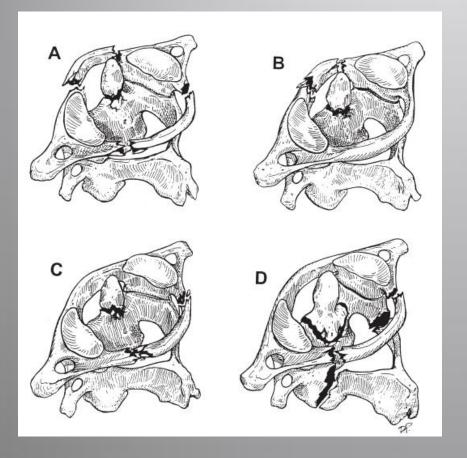
44-year-old man injured in motorcycle crash who sustained bilateral type III Anderson and Montesano [13] avulsion occipital condyle fractures

Hanson, J. A. et al. Am. J. Roentgenol. 2002;178:1261-1268

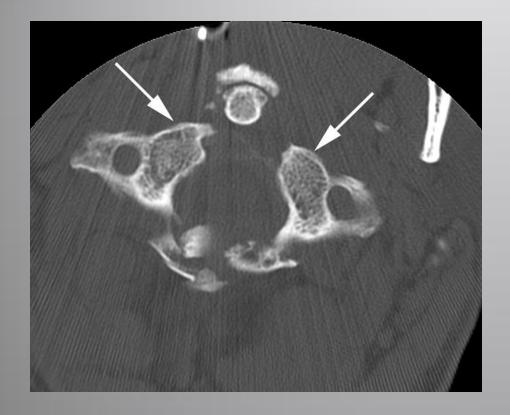


Types of Atlas fractures

Isolated fracture of the posterior arch resulting from hyperextension and axial loading Lateral mass fracture resulting from axial loading and lateral bending Jefferson's fracture resulting from axial loading Fractures of the anterior arch resulting from hyperextension Transverse process fractures


Jefferson Fracture

Hunter T B et al. Radiographics 2000;20:819-736


- Axial loading
- Comminuted
- Classic is a four part fracture
 - two anterior and two posterior
- Variant
 - involves one fracture through each arch but more central
 - Results is the same symmetric displacement of the lateral masses
 - About 15% are associated with cord injury

Combined fracture

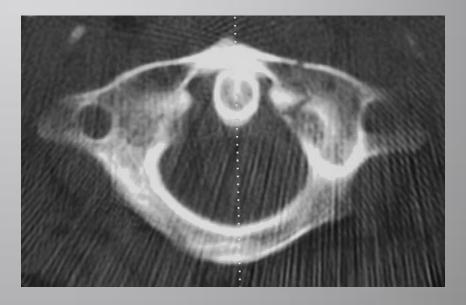
- Approximately 1/3 of Jefferson fractures are associated with a C-2 fracture
- If the sum of lateral mass displacement over articular surfaces of axis is > 7 mm the transverse ligament is likely to be torn
- If the atlantodental interval is >4mm there may be a rupture of the transverse ligament
- If the atantal dens interval is > 6 mm the transverse ligament is likely disrupted and the injury is unstable

Anterior arch fracture

Mohit A A , etl al AJR 2003;181:770

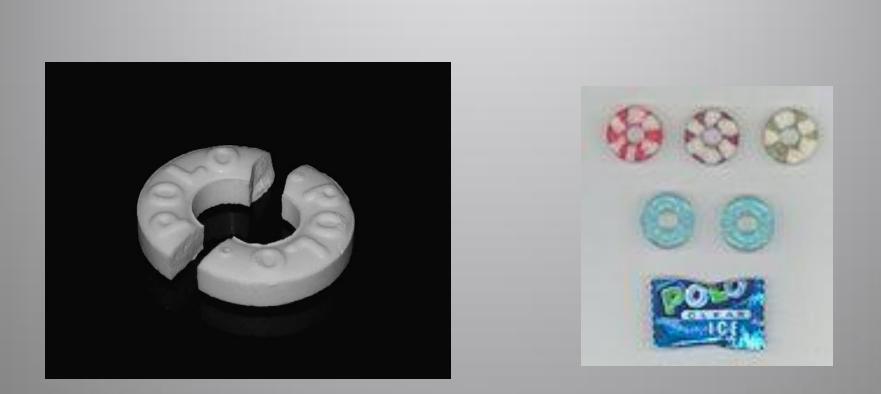
- Can be divided into two catagories
 - Horizontal which are proposed to be avulsions
 - Vertical most commonly seen as a component of the Jefferson fracture
- Plough variant
 - displaced fracture of the anterior arch resulting from hyperextension
 - The bony equivalent of a transverse ligament rupture

Anterior arch fracture

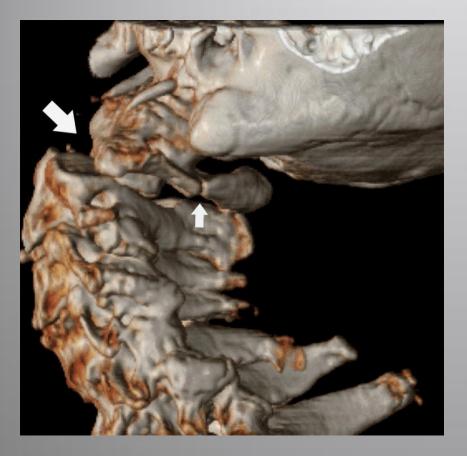

Rao S K et al. Radiographics 2005;25:1239-1254

Avulsion

related to the attachement of the longus colli or anterior longitudinal ligament Hyperextension Usually stable Can have an united ossification center that may be confused with an acute fracture


Lateral Mass fracture

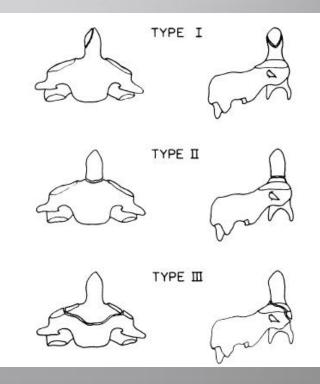
- Case report which did not follow the typical rules as the ring only broke in one place Usually stable Axial compression or lateral hyperflexion Typical teaching is that the ring breaks in two places
- The "polo mint"


Patton M S, et al Injury, Int. J. Care Injured (2006) 37, 663-664

Broken polo mint

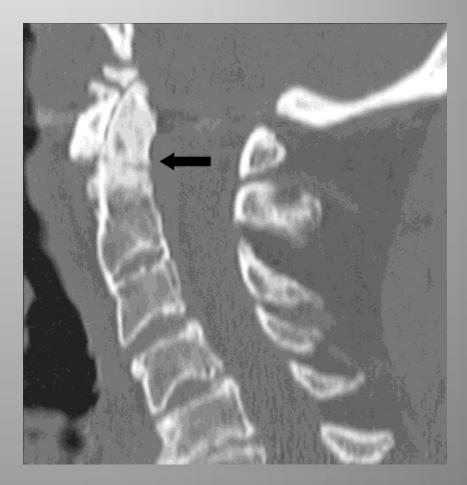
Patton M S, et al Injury, Int. J. Care Injured (2006) 37, 663-664

Posterior arch fracture



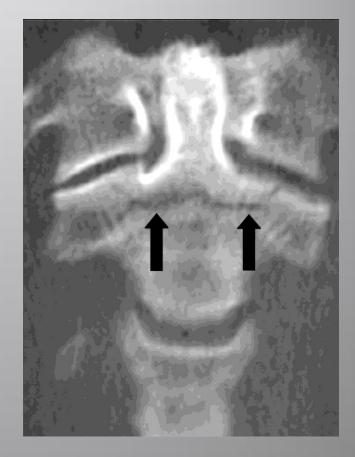
Compression of the posterior arch of C1 and the spinous process of C₂ during hyperextension Can be isolated but up to 1/2 have been shown to be associated with fractures of C₂ and C₃

Rao S K et al. Radiographics 2005;25:1239-1254

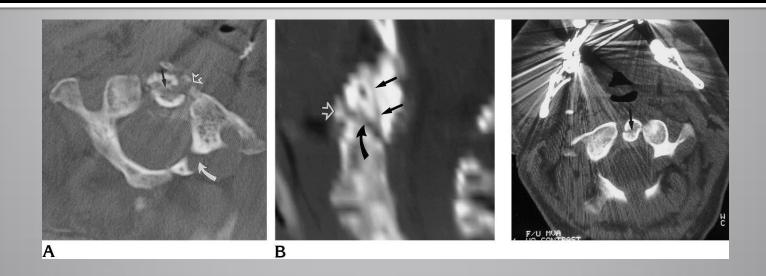

Dens fracture

- The most common fracture of the axis
- Accounts for > 50%
- Type I
 - rare, thought to be from avulsion of alar ligaments
- Type II
 - most common variant
- Type III
- Described variant
 - verticle fracture typically associated with more complex fractures
 - Mechanism
 - mostly felt to be multifactorial, including axial compression, hyperextension, hyperflexion and rotation

Type II


- Most common variant
 Transverse fracture throught the base of the dens
- Unstable
- Amount of angulation or displacement correlate with the likelihood of nonunion
 Nonunion reported in up to 50%

Rao S K et al. Radiographics 2005;25:1239-1254


Type III

- Horizontal fracture throught the superior body of C-2
- Stable
- Less commonly have issue with nonunion
 Suggested this is related to the larger area of cancellous bone involved

Rao S K et al. Radiographics 2005;25:1239-1254

Verticle dens fracture

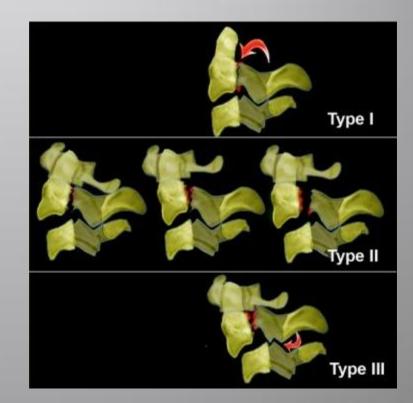
- Uncommon variant
- Most case are seen in associated with other craniocervical fractures

Fat C-2 sign

- Secondary to oblique fracture through C-2 body
- May be from a complex fracture of the C-2 body, a low (type III) dens fracture, or atypical traumatic spondylolithesis Multidirectional mechanism of injuryOften associated with ligmentous injury and may be unstable

C-2 hyperextension injuries

- Represent about 5% of cervical spine fractures Bilateral pedicle or par interarticularis fractures High association with vertebral artery injury which may lead to neurologic compromise About 33% associated with fractures elsewhere in the cervicothoracic spine
- Classification is based on Effendi artcle JBJS 1981



Rao S K et al. Radiographics 2005;25:1239-1254

Traumatic spondylolithesis (Hangman's)

Type I (65%) – fracture at the base of the pedicle

- Less than 3mm of translation, no angulation
- C2-3 disc normal
- Results from
 hyperextension with axial
 load
- Identification of pattern is based on use of flexion and extension images as Type II can appear as a type I on a supine radiograph

www.radiologyassistant.nl

Hangman's

- Type IA
- Atypical, remember the fat C-2 sign
- Hyperextension with axial loading or flexion with axial loading are the mechanisms seen in most of the Hangman type fractures

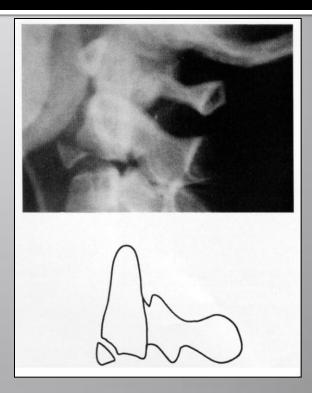
Pellei DD. The fat C2 sign. Radiology.2000;217:359-360

Hangman's

- Type II (28%)Displaced C2
 - -3mm with angular deformity
- Disrupted C2-3 disc
- Ligamentous rupture with instability
- Frequently seen with compression of the anterosuperior C3 body
- Type IIA
 - like type II but without the anterior translation and fracture line tends to be more oblique

Hangman's

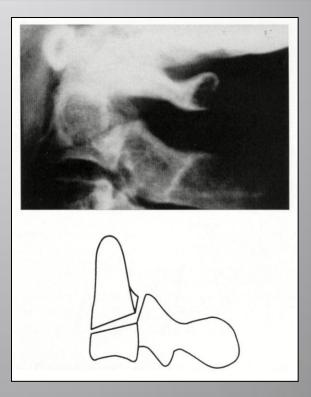
Type III (7%)


- displaced C2
- C2-3 bilateral facet dislocation
- severe instability

www.radiologyassistant.nl

Type I

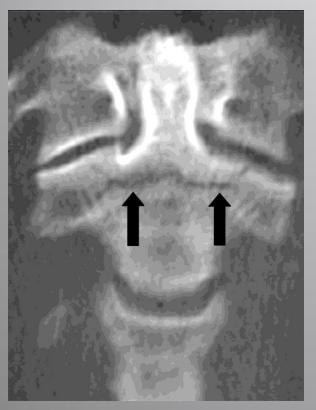
- avulsion fracture is localized at the anteroinferior margin of the axis body, and the fragment dislocates anteroinferiorly
 Mild posterior
- displacement of C2 on C3
- Hyperextension



Classification and Treatment of Axis Body Fractures. Fujimura, Yoshikazu; Nishi, Yukimi; Kobayashi, Keiji

Journal of Orthopaedic Trauma. 10(8):536-540, November 1996.

Type II


- transverse fracture of the c-2 body
- Differs from type III dens
- fracture is distal to the atlantoaxial joint
 Flexion-distraction or traction in extension

Classification and Treatment of Axis Body Fractures. Fujimura, Yoshikazu; Nishi, Yukimi; Kobayashi, Keiji

Journal of Orthopaedic Trauma. 10(8):536-540, November 1996.

TYPE III DENS FRACTURE

Rao S K et al. Radiographics 2005;25:1239-1254

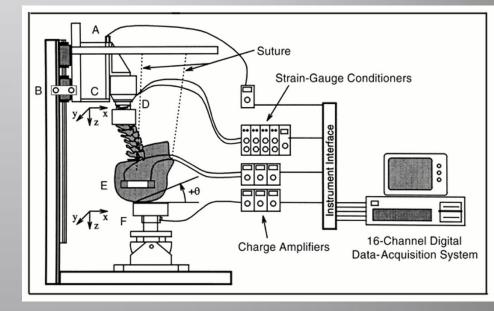
TYPE II C-2 BODY FRACTURE

Type III – burst fracture with displaced fragments **Posterior fragments** are commonly retropulsed Associated with traumatic spondylolisthesis Axial loading



Classification and Treatment of Axis Body Fractures. Fujimura, Yoshikazu; Nishi, Yukimi; Kobayashi, Keiji

Journal of Orthopaedic Trauma. 10(8):536-540, November 1996.


Type IV-

sagittal or parasagittal fracture extending from a point lateral to the dens vertically or diagonally to the inferior surface of C2

Lower cervical spine

- Three column Theory of Denis for predicting stability
- Soft tissue structures are critical in evaluation of stability in the presence or absence of bone pathology
- Numerous variations of classification systems for categorizing injuries
 Based on mechanism of injury

NIGHTINGALE R. W. et.al. J Bone Joint Surg 1996:78:412-21

Allen and Ferguson

- Widely accetped but more commonly utilized in the research setting
- Components:
 - Flexion-compression
 - Vertical compression
 - Flexion-distraction
 - Extension-compression
 - Extension-distraction
 - Lateral flexion

Each has various stages that are based on severity

Harris classification for lower cervical spine

MECHANSIM

- Flexion
 - Anterior subluxation (hyperflexion sprain)
 - Bilateral interfacetal dislocation
 - Simple compression fracture (wedge)
 - Clay-shoveler's fracture
 - Flexion teardrop fracture
- Flexion-rotation
 - Unilateral interfacetal dislocation
- Extension-rotation
 - Pillar fracture
- Vertical compression
 - Burst fracture
- Hyperextension
 - Hyperextension dislocation
 - Laminar fracture
 - Hyperextension fracture-dislocation
- Lateral flexion
 - Uncinate process fracture

LOCATION –LOWER CERVICAL

- Compression
- Burst
- Teardrop
- Facet fractures and dislocations
- Extension injuries
- Minor avulsions (transverse process, clay shoveler's)

Proposed classification

Table 3 "Minor" cervical injuries

Mechanism

1. Hyperflexion

- a. Spinous process fracture
- b. Wedge-like compression of body
- c. Transverse process fracture (isolated)
- d. Uncinate process fracture (isolated)
- e. Articular pillar fracture (isolated)
- f. Laminar fracture
- g. Lateral wedge fracture body

2. Hyperextension

- a. Horizontal fracture of anterior arch of atlas
- b. Anterior inferior margin of C2 ("teardrop")
- c. Spinous process fracture
- d. Posterior arch of atlas fracture (isolated)

3. Rotary

None

- 4. Axial compression
 - a. Lateral mass of atlas (isolated)
 - b. Occipital condyle type I and type II fractures

Table 2 "Major" cervical injuries

Mechanism

- 1. Hyperflexion
 - a. Hyperflexion sprain
 - b. Hyperflexion dislocation
 - (1) Without facet lock
 - (2) With unilateral or bilateral facet lock
 - c. Comminuted ("teardrop") body fracture
 - d. Burst fracture
 - e. Hyperflexion fracture-dislocation
 - f. Occipito-atlantal dislocation/subluxation
 - g. Atlantoaxial dislocation
 - h. Anterior fracture-dislocation of dens
 - i. Lateral fracture-dislocation of dens
- 2. Hyperextension
 - a. Hanged man fracture
 - b. Hyperextension sprain
 - c. Posterior fracture-dislocation of dens
 - d. Posterior atlantoaxial dislocation
- 3. Rotary
 - a. Rotary atlantoaxial dislocation (fixation)
 - b. Rotary atlantoaxial subluxation
- 4. Axial compression
 - a. Bursting fracture of Jefferson
 - b. Vertical and oblique fractures of axis body
 - c. Occipital condyle type III fracture

Daffner RH et al Skeletal Radiology (2000) 29:125-132

Major if....

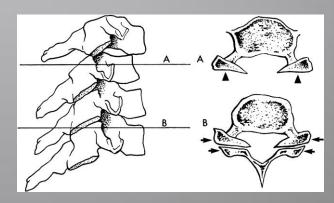
- >2mm of displacement in any plane
- Wide vertebral body in any plane
- Wide interspinous or interlaminar distance
 Wide facet joint
- Wide facet joint
- Disrupted posterior vertebral body line
- Wide disc space
- Burst fracture of the vertebral body
- Locked or perched facets (uni or bilateral)
- Hangman's fracture
- Dens fracture
- Type III occipital condyle fracture

Hughes categorization

Entity
Stability
Mechanism
Characteristics

Hyperflexion sprain

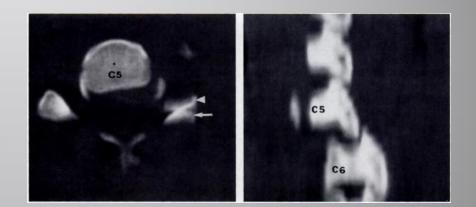
Disruption of ligaments Supraspinous, interspinous, ligamentum flavum, facet joint capsule, possibly PLL and posterior aspect of annulus fibrosus Frequently have normal radiographs with clinical evidence for cord injury Unstable

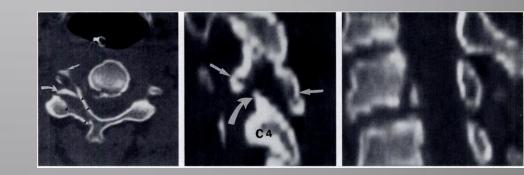


Wilmink European Radiology 9,1259-1266

Bilateral apophyseal joint dislocation

- Hyperflexion
 Significant
 ligamentous injury
 High association with neurologic deficit
 High association with traumatic disc
 herniation
- Unstable

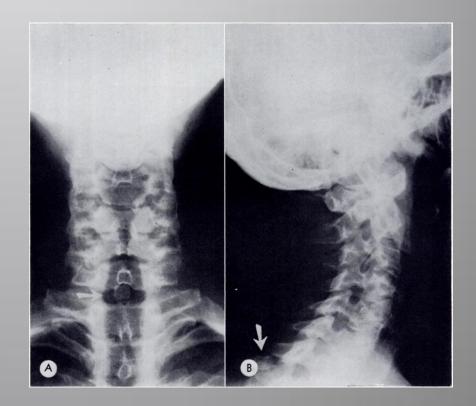




Lingawi S S Radiology 2001;219:366-367

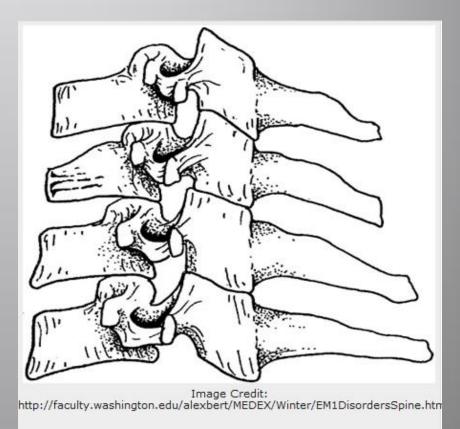
Unilateral apophyseal joint dislocation

- Hyperflexion with rotation
- Ligamentous injury
- Associated with
 fractures of the
 articular process and
 vertebral bodies
 Stability is variable



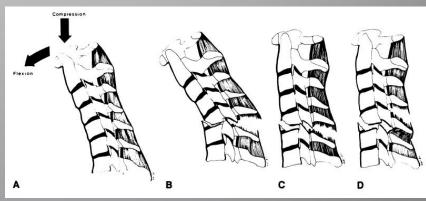
Shanmuganathan et al AJR 163 (5): 1165-1169 (1994)

Spinous process fractures


- Generally stable
 Careful to look for associated injuries
 Clay-shoveler's
 - Most common type
 - Inferior displacement
 - hyperflexion
- Hyperextension type
 - Impaction injury with contact of adjacent processes
- Double spinous process sign
 Stable

Cancelmo JJ AJR 115: 540-543

Vertebral body compression

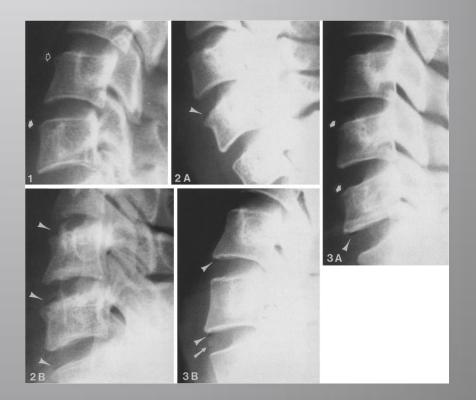

Wedge-like compression
Typically spares posterior ligaments
Usually stable
Compressive hyperflexion

Flexion teardrop

- Unstable
- Compressive hyperflexion
- Results in a characteristic finding of displacement of a majority of the body posteriorly into the canal
- Can be confused with other injuries producing teardrop fragments
- Disc disruption and ligamentous injury contribute to this being highly unstable
 Can see widening of facets and interspinous spaces but these findings are less specific for this type of injury

Kim KS et al AJR 152:319-326

Extension tear drop

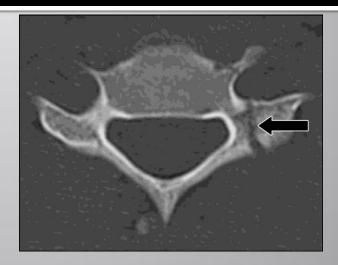

- Variable stability
- Hyperextension
- Tear drop fracture most commonly seen at C2
- More common in older people who are demineralized

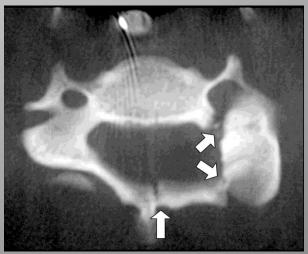
Rao S K et al. Radiographics 2005;25:1239-1254

Lucent annular cleft sign

Can be seen in the setting of trauma and can persist for years
 Can be seen in the setting of degenerative changes
 Stable vs unstable

Hyperextension


- Radiographs can be very unrevealing with a 1/3 showing only prevertebral soft tissue thickening
- Ruptures of ALL, annulus, disc
- PLL, ligamentum flavum and paraspinous muscles can be injured
 Majority have a small osseous component
 Cord injury almost
 - always present



Rao S K et al. Radiographics 2005;25:1239-1254

Pillar fractures

- Commonly stable
- Hyperflexion and rotation
- Unilateral vertical or obliquely oriented fracture
- Can be comminuted
- May extend into adjacent osseous structures
- Variant is pedicolaminar fracture which is considered unstable and has a higher association with neurologic compromise

Rao S K et al. Radiographics 2005;25:1239-1254

Burst fractures

- Variable stability
- Axial compression with flexion
- High level of neurologic deficit
- Depending of severity of fracture the lucency may not be well seen at radiography

Benedetti, P. F. et al. Am. J. Roentgenol. 2000;175:661-665

Lateral hyperflexion injuries

- Transverse process fracture
 - Stable
 - Uncommon
- Uncinate process fracture
 - Stable, uncommon
- Nerve root or brachial plexus avulsion
 - Variable stability
- Lateral wedge compression of vertebral body
 - Stable, uncommon

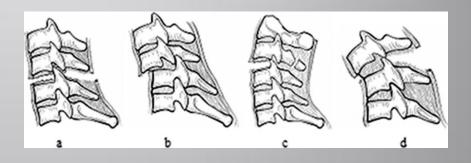
Newer classfication system

- SLIC- sub-axial injury classification
- Developed in response to a perceived lack of a "gold standard" system for classifying subaxial c-spine injuries and the resulting treatments
 Treatment is based on several variables
 - Fracture pattern
 - Suspected mechanism of injury
 - Spinal alignment
 - Neurologic injury
 - Expected long-term stability

SLIC

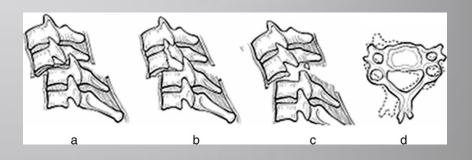
- Trended away from classic classification base on mechanism and anatomy
- Focuses on injury morphology and clinical status
- Goals were to morphologically categorize injuries and to predict treatment
- 3 injury axes were utilized
 - Morphology
 - DLC
 - Neurologic status

Compression


- Defined as the visible loss of height
 - Part or entire body
 - Disruption through an endplate
- Includes:
 - Compression fractures
 - Burst fractures
 - Sagittal and coronal plane fractures
 - Flexion compression fracture primarily involving the vertebral body
 - Can have fractures of the posterior elements when axial loading is more even throughout
 - D felt to likely be related to lateral compression
 - Compression category unless visible translation is present

- A compression fracture
- B compression fracture with DLC
- C compression with laminar fx
- D ND lateral mass and/or facet
- E axial view of lateral mass fx

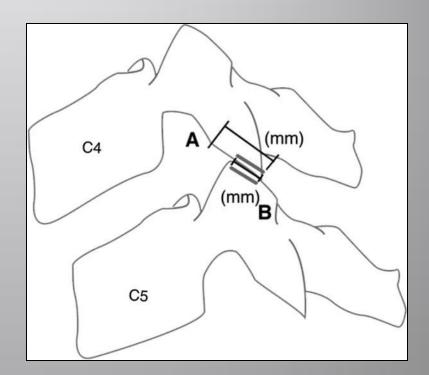
Distraction


- Evidence of dissociation in the vertical axis
 This pattern involves DLC injury
- Includes:
 - Pure distraction injuries
 - Hyperextension injuries
 - Hyperflexion injuries
 - Bilateral facet
 dislocations- these may be
 in translation category as
 well

- A circumferential distraction
- B bilateral facet dislocations
- C hyperextension with distraction
- D flexion with distraction

Translation/Rotation

Evidence of horizontal displacement Authors consider "any visible translation unrelated to degenerative changes" to be abnormal Unilateral or bilateral facet fracturedislocations, floating lateral mass, bilateral pedicle fractures


- A translation with DLC injury
- B translation with pedicle fx
- C translation with facet fx
- D rotation seen best on axial

DLC

- Includes:
 - Disc
 - ALL
 - PLL
 - Interspinous ligaments
 - Facet capsules
- Ligamentum flavum
 Injury is often inferred from visible abnormal bone relationships

DLC

- Evidence of instabilityAbsolute
 - <50% articular apposition
 of facets</pre>
 - >2mm of diastasis
 - Widening of the disc space
 - Increased signal in the disc space is considered highly suggestive
 - Interspinous widening may be indicative of DLC injury (instability) if flex/ext radiographs are abnormal

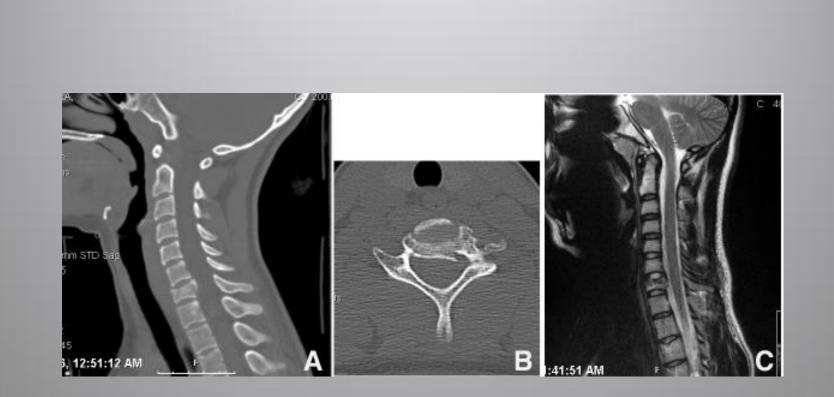
Measurement Techniques for Lower Cervical Spine Injuries: Consensus Statement of the Spine Trauma Study Group. Bono, Christopher; Vaccaro, Alexander; Fehlings, Michael; Fisher, Charles; Dvorak, Marcel; Ludwig, Steven; Harrop, James

Spine. 31(5):603-609, March 1, 2006. DOI: 10.1097/01.brs.0000201273.39058.dd

Neurologic status

- Historically not included in classification systems
- Important sign of the severity of spine injury
- Can be very influential in predicting the need for treatment

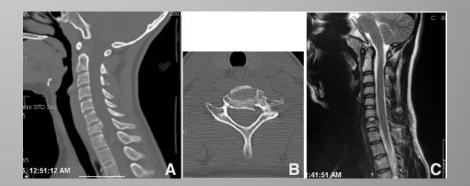
SLIC


Table 1. SLIC Scale

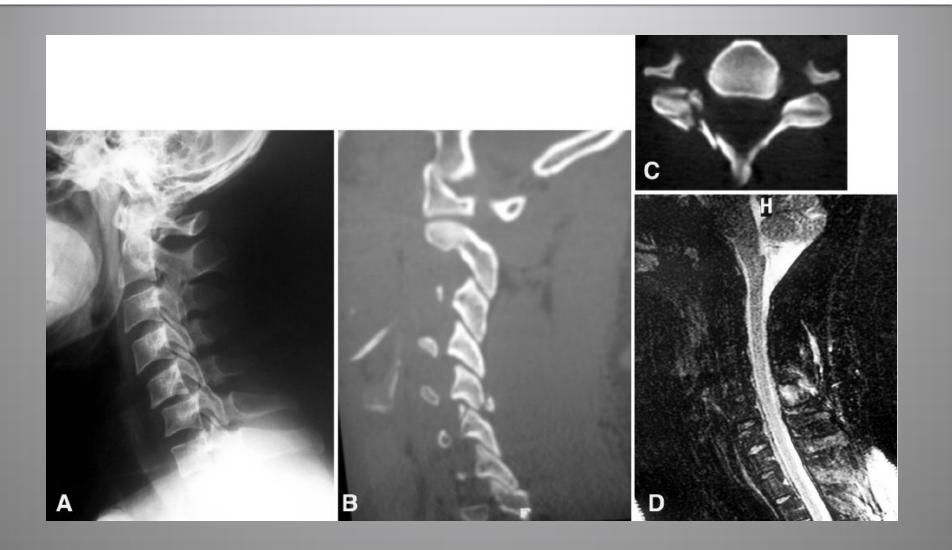
	Points
Morphology	151
No abnormality	0
Compression	1
Burst	+1 = 2
Distraction (e.g., facet perch, hyperextension)	3
Rotation/translation (e.g., facet dislocation, unstable teardrop or advanced staged flexion compression injury)	4
Disco-ligamentous complex (DLC)	
Intact	0
Indeterminate (e.g., isolated interspinous widening, MRI signal change only)	0 1
Disrupted (e.g., widening of disc space, facet perch or dislocation)	2
Neurological status	
Intact	0
Root injury	1
Complete cord injury	0 1 2 3
Incomplete cord injury	3
Continuous cord compression in setting of neuro deficit (Neuro Modifier)	+1

SLIC

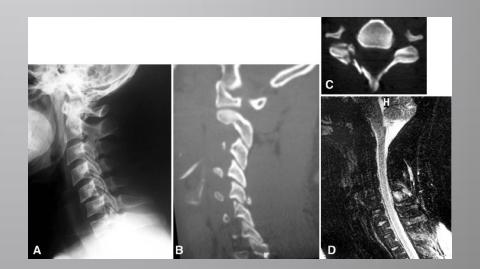
- The descriptive identification of the injury pattern includes:
 - Spine level
 - Morphology
 - Bone injury description
 - DLC status
 - Neurologic status
 - Confounders


SLIC application

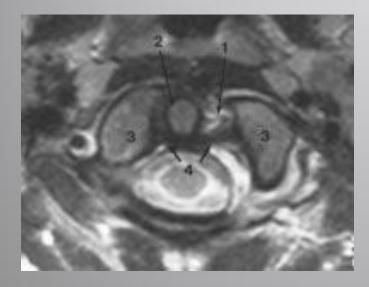
Patel et al Neurosurg Focus 25 (5):E8, 2008


Case

- Normal neurologic exam
- C-7 burst fracture, DLC intact
- 2 points for fracture
- o DLC intact
- o nl neuro exam
- Total 2 no surgery


Patel et al Neurosurg Focus 25 (5):E8, 2008

Case 2


Case 2

- Left arm weakness
 Translation at c5-c6 with fxs of facets and MR evidence for posterior ligamentous injury
- 4 –translational injury
 2 DLC disrupted (1)
- 1 abnormal neuro exam – root injury
- 7 = surgery

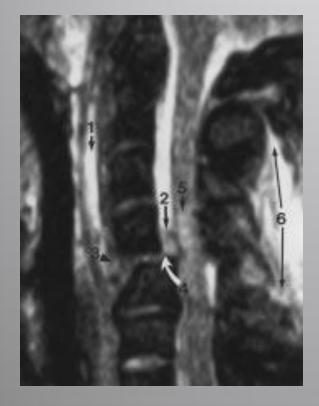
MR imaging

Evaluating the obtunded patient
Patients with negative imaging but persistent or developing neurological deficit
Positive CT with MRI assisting in determining the extended of soft tissue injury

- Torn alar ligament
 Fix deviation of the dens
- CT was negative for fracture or rotary fixation

- Torn tectorial membrane
- Torn right alar ligament
- Torn anterior atlantooccipital membrane
- Prevertebral soft tissue thickening
- The extent of injury and instability was not fully appreciable on CT and CR

 Disc extrusion and stripping of the PLL
 Disc extrusion, PLL tear, disrupted annulus fibrosus


Ligamentum flava tearInterspinous ligament

tear

 All findings were occult on CT

Central cord syndrome
ALL tear
Anterior disc disruption

- Bilateral facet dislocation
- ALL tear
- PLL tear
- Traumatic disc extrusion
- Cord contusion and compression
- Interspinous ligament injury