Tumors of Soft Tissue
Anatomy, Work-Up, and MR Features

Benjamin Levine, MD
May 14, 2009
Outline

I. Soft Tissue Anatomy
 • Compartmental

I. Imaging Work-Up
 • Post-Treatment Imaging

II. Soft Tissue Tumors—MR Features
 • WHO Classification
Soft Tissue Anatomy
Soft Tissue

- Derived from mesenchyme:
 1. Skeletal muscle
 2. Fat
 3. Fibrous tissue
 4. Vascular structures
 5. Associated peripheral nervous system
1. Local staging
 • Depends on which anatomic spaces (compartments) are involved
 • Intracompartamental lower stage

2. Biopsy
 • Risk of seeding malignant cells along needle track
 • Determines subsequent surgical approach; track usually resected
Compartmental Anatomy

• **Natural Barriers define compartments:**
 - Joint capsule
 - Cortex/periosteum
 - Tendon origins/insertions
 - Major fascial septae

• **Extracompartamental spread by:**
 - Direct tumor invasion
 - Fracture
 - Hemorrhage
 - Poorly planned biopsy

Compartmental Anatomy

General

- Skin/Subcutaneous fat
- Bone
- Paraosseous
 - Space between bone and overlying tissues
- Intraarticular
- Muscle
- Neurovascular
 - Not a compartment, but can provide route of extracompartmental spread
Compartmental Anatomy
Upper Extremity

- Upper Arm
 - Anterior
 - Posterior
- Forearm
 - Dorsal
 - Volar
- Purely Extracompartmental
 - Periclavicular
 - Axilla
 - Antecubital fossa
 - Wrist
 - Dorsum of hand
Compartmental Anatomy
Lower Extremity

- Thigh
 - Anterior
 - Posterior
 - Medial
- Lower Leg
 - Anterior
 - Deep posterior
 - Superficial posterior
 - Lateral
- Foot
 - Medial, central, lateral plantar
- Purely Extracompartmental
 - Inguinal
 - Popliteal fossa
 - Ankle
 - Dorsum of foot
Work-Up
Soft Tissue Tumors
Preliminary Evaluation

• Clinical History

✓ Previous lesion/underlying malignancy?
✓ Prior surgery/radiation?
✓ Painful vs painless
✓ Trauma
✓ Anticoagulation
✓ Stability over time/Variation in size
Soft Tissue Tumors

Initial Evaluation

- > 1 lesion limits DDx

- Multiple soft tissue tumors:
 - Lipomas
 - Fibromatoses
 - Neurofibromas
 - Angiomatous lesions
 - Myxomas
 - Mets (rare)

Kransdorf MJ, Murphey MD. AJR 2000; 175: 575-587
Soft Tissue Tumors

Imaging

- Radiographs (Always)
 - Specific calcifications (exostosis, phleboliths, synovial chondromatosis, myositis ossificans)
 - Non-specific calcifications (dystrophic in slow growing mass suggests synovial sarcoma)
 - Osseous Involvement
Soft Tissue Tumors

Imaging

- Sonography
 - Fast
 - Inexpensive
 - Ideal for solid vs. cystic when anatomically accessible

- CT
 - Further evaluate pattern of mineralization
 - Relationship to nearby complex osseous structures (Pelvis, shoulder, paraspinal)

- MRI
 - Modality of choice
 - Superior soft tissue contrast
Soft Tissue Tumors

Imaging

• MR cannot reliably distinguish benign from malignant soft tissue masses

• Non Specific:
 • Contrast enhancement (solid v. cystic, hematomas, necrosis for biopsy or trtmt response)

• Suggestive of malignancy:
 • Larger (5% benign tumors > 5 cm)
 • Heterogenous signal (infarction, necrosis)
 • Well-defined borders
 • Deep (1% benign tumors are deep) > superficial

Kransdorf MJ, Murphey MD. AJR 2000; 175: 575-587
Post-Treatment Imaging
Soft Tissue Tumors
Post-Treatment Imaging

• 50% patients with soft tissue sarcomas have local recurrence

• Increase Risk for Local Recurrence:
 • Tumor diagnosis
 • High Grade
 • Deep location
 • Unable to obtain wide margins
 • Radical resection vs marginal excision
 • Positive Surgical margins

• Radiation or chemotherapy (time course)
• Reconstructive surgery (time course)
Soft Tissue Tumors
Post-Treatment Imaging

- MR
 - Discrete nodule (Post surgical changes more variable)
 - Recurrent tumor looks like the primary tumor (review pre-op)
 - Markers noting scar margins
 - Contrast (necrosis/response, hematoma)

Soft Tissue Tumors

Radiation

- Marrow changes
 - As early as 8 days
 - Increasing fatty signal (1-6 wks)
 - Complete fatty replacement in 6-8 wks
 - Can see focal non specific signal (radiation osteitis), mean 9 months

Soft Tissue Tumors
Radiation

- **Soft Tissue Changes**
 (Peak 12-18 mo; half return to nl in 2-3 yrs)

 - Trabecular/lattice-like subcutaneous signal
 - Diffuse muscle enhancement, preservation of shape and architecture
 - Signal persists in intermuscular septae longer
 - Pseudotumor
 - Sarcoma

Kransdorf MJ, Murphey MD. RCNA 2006; 44:463-472
Soft Tissue Tumors
Post-Treatment Changes

Chemotherapy
- May increase tumor size at first due to hemorrhage
- Necrosis predicts response

Postoperative Fluid and Hemorrhage:
- Similar appearance seen with non-oncologic procedures
- Most seromas resolve in 3-18 months
Soft Tissue Tumors
Post-Treatment Changes

• **Reconstructive Surgery**

 • Myocutaneous flaps used in > 2/3

• **Rotational Flaps**

 • Rotated into position preserving native neurovascular pedicle

• **Free Flaps**

 • Completely detached with vascular pedicle reanastomosed
Soft Tissue Tumors
Reconstructive Surgery

- Atrophy with time (less with those providing function)
- Increased T2 signal initially
- Signal returns to baseline within 2 yrs (1/3 cases)
- Enhancement in 3/4; returns to baseline in 18 months in 1/3

Soft Tissue Tumors
Post-Treatment Changes

4 months

31 months

Soft Tissue Tumors
Soft Tissue Tumors

- Benign 100X more common than malignant
- Soft tissue sarcomas 2-3X more common than primary malignant bone tumors
- Tumors classified histologically based on adult tissue they resemble
- Many demonstrate specific MR features, but majority are nonspecific
Soft Tissue Tumors
WHO Classification

- Neurogenic
- Vascular
- Fibroblastic
- Adipocytic
- Fibrohystiocytic
- Smooth Muscle
- Perivascular
- Skeletal Muscle
- Chondro-osseous
- Tumors of uncertain differentiation
Neurogenic Tumors
Peripheral Nerve Sheath Tumors

Benign

- Schwannomas/Neurofibromas
 - Fascicular Sign
 - Split Fat Sign

- Neurofibroma
 - Target pattern (T2)
 - Infiltrative: resection sacrifices nerve

- Schwannoma
 - Eccentric
 - Displaces nerve: resection spares nerve
Peripheral Nerve Sheath Tumors
Malignant

- Pain, rapid growth
- No target, split fat, or fascicular sign
- Intralesional hemorrhage and necrosis (peripheral enhancement)
- Inhomogenous (T1, T2, Post)
- Nodular
- Along course of large nerve
Peripheral Nerve Sheath Tumors

Malignant

Malignant Peripheral Nerve Sheath Tumor?
Malignant Peripheral Nerve Sheath Tumors

- MR and CT not reliable in characterizing benign vs. malignant
- Surgical resection of entire lesion often not feasible
- Biopsy may yield false negative due to sampling error
MPNST and FDG-PET

- FDG PET sensitive (95%) in detecting MPNST in patients with NF1

- Can also detect mets or second primaries (GIST which is associated with NF1)

Bredella MA, et al. AJR 2007; 189:928–935
MPNST and PET

- PET specificity lower (72%)

- Can use 11-C Methionine PET to increase specificity (91%)

Bredella MA, et al. AJR 2007; 189:928–935
Vascular Tumors
Vascular Anomalies

Tumors of Childhood

- Hemangioma

 Childhood neoplasm with a proliferative and involutive phase (not applicable to any adult lesion)

Vascular Malformations

- Capillary
- Venous
- Lymphatic
- Ateriovenous
- Mixed

Vascular Malformations

- Prevalence 1.5%
- Pelvis, extremities, intracranial most common
- Not neoplastic (do not proliferate or involute)
Vascular Malformations

Low Flow
- Venous
- Capillary
- Lymphatic

High Flow
- Arteriovenous malformation
- Arteriovenous fistula

Low Flow Malformations

- Venous most common of the extremities
- Present at birth, grow proportionately with patient, do not regress
- Forearm flexors and quadriceps muscle most common (venous)
High Flow Malformations

- AVM
 - Feeding arteries and draining veins connected by multiple dysplastic vessels

- AVF
 - Direct connection between arteries and veins, bypassing capillary bed
Vascular Malformations
MR Assessment

1. Distinguish from Hemangioma
 - Age + no mass effect (caution atypical low flow lesions which can appear mass-like and share features of hemangiomas, angiosarcomas, myxoid, fibrosarcoma)

2. Low vs. High Flow
 - Flow voids
 - Feeding arteries, draining veins, dysplastic vessels

3. Focal, multifocal, or diffuse

4. Adjacent tissue involvement
 - Skin, subcutaneous, muscle, tendon, bone
 - Can contain fat, hemosiderin, Ca++, thrombus

5. Connection to normal vessels
 - Arterial vs. Deep Venous (DVT risk)
Fibrous Tumors
I. Benign Fibrous Proliferations
 • Nodular Fasciitis
 • Proliferative Fasciitis
 • Proliferative Myositis
 • Fibroma of the Tendon Sheath
 • Keloid/Hypertrophic Scar
 • Elastofibroma

II. Fibromatoses
 • Superficial (Palmar, Plantar, Penile)
 • Deep (Intraabdominal, extraabdominal)

III. Fibrosarcomas

I. Fibrous Proliferations of Infancy/Childhood
Benign Fibroblastic Proliferations
Nodular Fasciitis

- Most common benign mesenchymal lesion histopathologically misdiagnosed as sarcoma
- 20-40 years
- < 4 cm, rapidly growing
- Upper extremity (volar forearm)

Benign Fibroblastic Proliferations

Nodular Fasciitis

- Typically subcutaneous, and attached to superficial fascia
- Low to intermediate signal on T1 and Intermediate to high signal on T2
- Enhance
- Fascial tail sign

Courtesy Tudor Hughes, M.D.
Benign Fibroblastic Proliferations

Elastofibroma

- > 55 years
- Between posterior chest wall and inferomedial scapula border (also about greater trochanter and olecranon)
- Bilateral (25%)
- Signal similar to skeletal muscle intermixed with streaky fat signal
- Heterogenous enhancement

Courtesy Tudor Hughes, M.D.
Fibromatoses
Superficial

- **Palmar Fibromatosis** (Dupuytren Disease)
 - Volar aponeurosis of hand
 - > 30 years
 - Variable T2 depends on collagen maturity and may suggest propensity to recur

- **Plantar Fibromatosis** (Ledderhose Disease)
 - Bilateral 20-50%
 - M > F (2X)
 - Associated palmar fibromatosis (10-65%)

Fibromatoses
Deep (Desmoid Tumors)

I. Intraabdominal
 • FAP (Gardner Syndrome)

II. Abdominal
 • Pregnant women, or OCP
 • Rectus abdominis and Internal Oblique

III. Extraabdominal
 • > 5 cm
 • Typically solitary
 • Can be aggressive, local recurrence high (87% in < 20 yo)
Deep Fibromatoses

MR Features

• Non-enhancing, T2 hypointense bands corresponding to collagen bundles (86%)

• Infiltrative border or fascial tail (80%)

• Evaluation of response to treatment:
 • Decreased cellularity and increased collagen show low T2 signal (positive response)
Lipomatous Tumors
Lipomatous Tumors

Benign
- Lipoma
- Lipomatosis
- Lipomatosis of nerve
- Lipoblastoma
- Angiolipoma
- Spindle cell/Pleomorphic lipoma
- Myolipoma
- Chondroid lipoma
- Hibernoma

Malignant
- Liposarcoma
 - Well-differentiated
 - Dedifferentiated
 - Myxoid
 - Pleomorphic
 - Mixed-type
Lipoma

- Most common soft tissue tumor (50%)

- Benign neoplasm vs. local hyperplasia of fat cells

- Superficial
 - Upper back, neck, proximal extremities, abdomen
 - < 5 cm

- Deep
 - Intra vs. Intermuscular (arbitrary) (if both = infiltrating)

Lipoma

- Multiple (5-15%)
- Thin, non enhancing septa (< 2 mm)
- No capsule with intramuscular and some subcutaneous lipomas
- Intramuscular lipomas have irregular margins, striated
- No malignant transformation
Lipoma
Lipomatosis of Nerve (Fibrolipomatous Hamartoma)

- < 30 years old
- Median nerve (85%)
- Macrodactyly (27-67%)
 (Macrodystrophia lipomatosa)
- *Lipomatosis of the nerve with or without macrodactyly*
Lipoblastoma

- < 3 years old
- Superficial, extremities
- Progress to mature lipomas
- Imaging appearance can be similary to myxoid liposarcoma (rare < 10 yrs old)

Bancroft LW, et al. Skeletal Radiology 2006; 36: 719-733
Soft Tissue Sarcomas
Soft Tissue Sarcomas

• 75% arise in extremities
• Usually develop de novo (not from dedifferentiation of benign tumor)
• Hematogenous metastasis (lungs)

• > 50 subtypes (75% are the following):
 • Undifferentiated Pleomorphic Sarcoma (MFH)
 • Liposarcoma
 • Leiomyosarcoma
 • Synovial Sarcoma
 • Malignant Peripheral Nerve Sheath Tumor
Undifferentiated Pleomorphic Sarcoma (MFH)

- Histologic diagnosis of exclusion
- Non specific MR features
- Peripheral enhancement common (necrosis, hemorrhage, or myxoid content)
Undifferentiated Pleomorphic Sarcoma (MFH)
Liposarcoma

• Second most common type of soft tissue sarcoma

• Five histologic subtypes:
 - Well-differentiated
 - Dedifferentiated
 - Myxoid
 - Pleomorphic
 - Mixed-type
Well-Differentiated Liposarcoma

- Most common subtype (50%)
- Deep soft tissues of extremities (65-75%), retroperitoneum (20-33%)
- No metastatic potential
- *Atypical lipomatous lesion* reserve for subcutaneous lesions

Well-Differentiated Liposarcoma

• > 75% of the lesion composed of fat
• Thick, enhancing septa (> 2mm)
• Liposarcoma > lipoma:
 - Male
 - > 66 years old
 - < 75% fatty
 - Calcifications
 - Size > 10 cm
 - Septa > 2 mm
 - Nonlipomatous nodular or globular foci

Myxoid Liposarcoma

- Second most common subtype
- Younger pt ($4^{th}-5^{th}$ decade)
- *Intermuscular, lower extremity*

- Pathognomonic MR:
 - Fatty septa or nodules in a myxoid mass
 - May simulate a cyst (unusual location) or myxoma (*intramuscular*)
Leiomyosarcoma

- Smooth muscle
- Intermuscular and subcutaneous, rarely in association with a vessel (vein)
- Irregular rim enhancement
- Ca++ uncommon
Courtesy Tudor Hughes, M.D.
Synovial Sarcoma

- 2nd-4th decade
- Deep soft tissues of extremities and adjacent to joints or tendon sheaths (popliteal fossa)
- Triple T2 signal (relative to fat)
- Heterogeneous signal and variable contrast enhancement
- Ca++ (33%)
- Fluid-fluid levels
- Bone erosion (20%)
Synovial Sarcoma
Summary

I. Soft Tissue Anatomy
 • Compartmental

II. Imaging Work-Up
 • Post-Treatment Imaging

II. Soft Tissue Tumors—MR Features
 • WHO Classification
Thank You!

References