MR Evaluation of Bone Marrow Disorders

Nisha Patel, MD
Introduction

- Nearly all imaging modalities evaluate the marrow, which is a site of significant pathology
 - Radiography
 - Nuclear Medicine
 - CT
 - MR
Topics of Discussion

- Normal marrow anatomy and function
- MRI appearance of normal marrow
- Benign and malignant marrow pathology
Normal Marrow Anatomy and Function

- Three basic marrow components:
 - Trabeculae
 - Red marrow
 - Yellow marrow
Trabeculae

- Serve as the architectural support for the marrow and as a mineral depot.
- Number of trabeculae decreases with age.
Red Marrow

- Composed of hematopoietic cellular elements (red and white cells and platelets), supporting stroma (reticulum), and rich sinusoidal vascular supply
- Smaller fraction of fat cells (40%)
- It increases if the demand for hematopoiesis increases
Yellow Marrow

- Smaller fraction of red marrow elements.
- Larger fraction of fat cells (>50%)
- Poor vascular supply
- Paucity of reticulum
- Increases with age
Topics of Discussion

- Normal marrow anatomy and function
- MRI appearance of normal marrow
- Benign and malignant marrow pathology
MRI Appearance of Normal Marrow

- T1W SE and STIR are most commonly used sequences to evaluate the marrow.
- In general, yellow marrow follows the signal intensity of subcutaneous fat, with relatively high signal on T1W images and low signal on STIR images.
- Red marrow follows the signal intensity of muscle and has an intermediate signal intensity on T1W images and STIR images.
Marrow Conversion

- Amount and distribution of red and yellow marrow changes with time as well as in response to physiologic stresses
- Normal conversion of red to yellow marrow occurs in a predictable and progressive manner
- At birth, nearly the entire osseous skeleton is composed of red marrow.
- Conversion proceeds from the appendicular (distal to proximal extremities) and then to the axial skeleton in a bilateral symmetric fashion.
Within an individual long bone, conversion occurs in the following sequence:

 Epiphysis and apophysis →
 Diaphysis →
 Distal metaphysis and proximal metaphysis
Marrow Conversion in Long Bones

- Infantile (0-1y)
- Childhood (1-10y)
- Adolescent (10-20y)
- Adult (25+)
Infantile pattern

- 0-1 year
- Homogeneous low signal marrow in diaphyses and metaphyses
Childhood pattern

- 1-10 year
- Higher signal in diaphyses and metaphyses representing red ➔ yellow marrow conversion
Adolescent pattern

- 11-20 year
- Distal metaphyseal marrow converts to yellow marrow
- Residual islands of red marrow leave a heterogeneous pattern to the metaphyseal marrow
Adult pattern

- 25 years +
- Predominant homogeneous high signal diaphyseal and metaphyseal marrow
- Hematopoietic marrow concentrated in the axial skeleton (skull, ribs, vertebra, sternum, pelvis) and to a lesser degree in the proximal appendicular skeleton (proximal femora and humeri)
Adult pattern

- After adult pattern reached, there is continued and gradual further replacement of hematopoietic marrow with fatty marrow
- Spine and pelvis on T1 in elderly reflect this change
Topics of Discussion

- Normal marrow anatomy and function
- MRI appearance of normal marrow
- Benign and malignant marrow pathology
Bone Marrow Abnormalities

- Two USEFUL variables
 - Distribution of normal hematopoietic marrow
 - Has a characteristic distribution based on age and functional status
 - Thorough knowledge is important as any variation can represent disease
 - Signal intensity
 - Muscle or Disc serve as internal control
 - Normal marrow signal: isointense/hyperintense to muscle or disc on T1W
 - Diseased marrow: hypointense T1 signal compared to the muscle or disc
Marrow Pathology

- Disorders of marrow proliferation
- Disorders of marrow replacement
- Disorders of marrow depletion

- Vascular and Miscellaneous abnormalities
Marrow Proliferative Disorders

- Arise from the proliferation of cells that normally exist in the marrow
- Involve the marrow in a **diffuse** manner (except for focal multiple myeloma)
Marrow proliferative disorders

- **Benign**
 - Marrow reconversion
 - Mastocytosis
 - Amyloidosis

- **Malignant**
 - Polycythemia Vera
 - Myeloid Metaplasia with Myelofibrosis
 - Waldenstrom’s macroglobulinemia
 - MM
 - Leukemia
Marrow Reconversion

- Reconversion is due to increased demand for hematopoiesis.
- Can be seen in hemolytic anemias, high level athletes, GCSF therapy, smokers, and destruction of red marrow.
Marrow Reconversion
Mastocytosis

- Rare disorder characterized by mast cell proliferation
- Most commonly occurs as a skin manifestation (urticaria pigmentosa—generally a self-limited dermatologic disorder in children)
- Systemic form rarer and involves the bone marrow and internal organs
- Xrays
 - Lytic or sclerotic lesions in a focal or diffuse distribution
- MR
 - Nonspecific pattern ranging from normal, focally/diffusely heterogeneous
 - Typically involves axial skeleton
Courtesy of Tudor Hughes, M.D.
Courtesy of Tudor Hughes, M.D.
Myeloproliferative disorders

- Group of diseases
 - Polycythemia rubra vera
 - Agnogenic myeloid metaplasia (AMM) (Idiopathic myelofibrosis)
 - CML
 - Essential thrombocytopenia

- Older patients (6th-8th decade)
- Malignant transformation of pluripotent stem cells resulting in expansion of various BM elements
- PV and AMM have similar MR appearance
 - Diffuse intermediate T1 signal
- Myelofibrosis
 - Diffuse/Patchy sclerotic bone
 - Low T1 and T2 signal
Polycythemia Vera

Courtesy of Tudor Hughes, M.D.
Myelofibrosis

Courtesy of Tudor Hughes, M.D.
Myelofibrosis

Courtesy of Tudor Hughes, M.D.
Leukemia

- Acute: diffuse skeletal involvement
- Chronic: (adults) involve areas of residual marrow in pelvis, spine, femurs
- Involvement of the epiphyses/apophyses at any age reflects higher tumor burden
Multiple Myeloma (MM)

- Most common primary bone tumor
- Solitary (plasmacytoma) form and more common multiple (myeloma) form
- Xrays
 - Solitary lytic lesion or numerous focal punched out lesions
 - Generalized osteopenia
- MRI patterns of MM in order of increasing frequency:
 - normal (low tumor burden)
 - focal lesion
 - heterogeneous (variegated)
 - homogenous (diffuse)
Marrow Pathology

- Disorders of marrow proliferation
- Disorders of marrow replacement
- Disorders of marrow depletion

- Vascular and Miscellaneous abnormalities
Marrow Replacement Disorders

- Implantation of cells in the marrow that do not normally exist there
- Usually **focal** lesions
- MRI appearances include low T1 signal (equal or less than muscle or disc) and variable T2 signal (usually high, unless sclerotic).
Marrow Replacement Disorders

Benign
- Primary Bone tumors
- Osteomyelitis

Malignant
- Metastasis
- Lymphoma
- Malignant Bone tumors
Metastasis

- Common primaries: breast, lung and prostate
- Involve red marrow in spine, pelvis, prox femurs and humeri
- Focal lesions with low T1 and high T2 and variable surr. edema
Lymphoma

- Primary lymphoma of bone rare
- NHL > HD
- Xray
 - Permeative and lytic
 - Appendicular skeleton in diaphyses of femur, tibia and humerus
Marrow Pathology

- Disorders of marrow proliferation
- Disorders of marrow replacement
- Disorders of marrow depletion

- Vascular and Miscellaneous abnormalities
Marrow Depletion Disorders

- Due to ablation of red marrow elements
- Involvement can be diffuse or regional in distribution
- 3 main causes include chemotherapy, radiation, and aplastic anemia
- MRI appearances follow the signal intensity of fat
Chemotherapy

- Systemically destroys normal hematopoietic marrow and tumor cells
- 1st week post chemo
 - Edematous and hypocellular marrow
- Post 1st week
 - Progressive fat replacement of marrow
 (similar to untreated aplastic anemia)
Aplastic Anemia

- Acquired (infections, drugs, toxins) or congenital causes (Fanconi, TAR Sx, etc)
- MR
 - Classic description
 - Diffuse fat replacement of marrow
 - Foci of low T1 signal may represent
 - Residual islands of red marrow
 - Post Rx regenerative marrow
 - Development of MDS/Leukemia
Foci of low T1 signal may represent
- Residual islands of red marrow
- Post Rx regenerative marrow
- Development of MDS/Leukemia
Radiation

- Acute and Chronic induced changes
- MR appearance of radiated marrow depends on phase in which it was imaged and dose
 - 1st 2 weeks: Increased STIR with slight increase in T1
 - 3rd-6th weeks: heterogeneous signal
 - >6th weeks: chronic changes of fat replacement

- Dose < 30 Gy may have regeneration after 1 year
- Dose >30-40 Gy irreversible changes
Stevens et al. AJR. 1990; 154: 745-750
Marrow Vascular and Miscellaneous Abnormalities

- **Vascular**
 - Hyperemia and Ischemia
 - Transient and regional migratory osteoporosis
 - RSD
 - Osteonecrosis
 - Trauma
 - Infection
 - Tumors
 - Joint abnormalities (degenerative or neuropathic arthropathy)

- **Other**
 - Storage diseases: Glycogen (Gaucher’s) or Iron
 - Paget’s disease
 - Osteopetrosis
Transient Osteoporosis of the Hip

- Painful process that affects mainly young and middle age men in either hip or pregnant women more commonly in the left hip.
- Osteoporosis can be severe enough to cause an insufficiency fracture.
- MR
 - Homogeneous Focal/Diffuse well marginated edema
 - May spare medial and/or lateral margins of femoral head +/- greater trochanter
 - Occasional acetabular edema
 - Small-moderate joint effusion
Transient Osteoporosis of the Hip
Regional Migratory Osteoporosis

- Similar MRI and clinical features as TOH
- Not confined to the hip and migratory in nature
- Subchondral regions of the knee, ankle, and hip each may be affected in turn
Marrow Ischemia (Osteonecrosis)

- **Synonymous terms**
 - AVN (Focal lesions in the epiphyses)
 - Bone infarct (Metaphysis or diaphysis)

- **Causes**
 - Trauma, steroids, HbS, SLE, Gaucher disease, ETOH, pancreatitis, and idiopathic
Gaucher Disease

- Rare lysosomal storage disease leading to the accumulation of glucocerebroside within the RES

- MR
 - Focal/ Diffuse hypointensity on T1 and T2
 - Active disease hyperintense on T2 FS and STIR
 - Lumbar spine involved first followed by appendicular skeleton
Gaucher Disease

- Treatment includes administration of the deficient enzyme
- MRI can be used to monitor treatment demonstrating decreased marrow infiltration on serial exams in those who are responding
Summary

- Bone marrow disorders have a nonspecific MR appearance but remembering the categories of diseases and correlating this with clinical history can be helpful
 - Marrow Proliferative
 - Marrow Replacement
 - Marrow Depletion
 - Vascular/Miscellaneous

- Two useful characteristics for evaluating marrow disorders
 - Distribution
 - Normal marrow conversion and reconversion patterns
 - Signal Intensity (muscle and disc serve as internal standard)
 - Normal marrow: same or higher signal
 - Abnormal marrow: lower signal
References

- Bone and Joint Disorders, Resnick et al, 2005