Less Common Causes of Elbow Pain

Tyler Crawford, MD May 11, 2006

Pain in the throwing athlete

Usually medial

Usually (85%) during acceleration phase Etiology: Ulnar collateral ligament tears, ulnar neuritis, flexor-pronator strain/tear/tendonosis, medial epicondyle avulsion, valgus extension overload syndrome, olecranon stress fractures, OCD, loose bodies

Cain EL. Amer J Sports Med 2003; 3(4):621-635

Ulnar Collateral Ligament

Most important to exclude an injury to the ulnar collateral ligament

- Anterior band from the medial epicondyle to the sublime tubercle
- Injury usually not a difficult clinical question

Cain EL. Amer J Sports Med 2003; 3(4):621-635

Munshi M. Radiology 2004; 231:79 803

Ulnar Collateral Ligament

Partial tear

Complete tear

T2 FS Kijowski R Skeletal Radiol(2005) 34:1-8

T2 FS

Valgus extension overload syndrome

Repetitive high loads during throwing may lead to anterior band UCL attenuation & failure

Carry angle (nl 11 men and 13 women) may increase to >15 degrees

Valgus stress leads to "kissing lesion" osteophytes on posteromedial olecranon/trochlea

Cain EL. Amer J Sports Med 2003; 3(4):621-635

Valgus extension overload syndrome

- Subtle laxity may contribute to medial soft tissue and posterior compartment osseous disorders
- Posterior compartment osteophytes and bodies are the most common cause for surgery among baseball players

Cain EL. Amer J Sports Med 2003; 3(4):621-635

Cain EL. Amer J Sports Med 2003; 3(4):621-635

Snapping Elbow

- Subluxation of the medial head of the triceps
- Subluxation of the ulnar nerve
- Intra-articular factors, such as torn annular ligament
- Synovial folds
- Intraarticular bodies

Synovial Folds

Commonly seen within the elbow as a remnant of joint development
May simulate intra-articular bodies
Normal anterior and posterior fat pads may mimic synovial folds

Normal nodularity

Synovial Fold Syndrome

- Patients present with locking or limitation of full extension because of impingement
 Superoposterior plicae in the superior olecranon recess
 Both symptomatic and asymptomatic
 - patients may have thickened folds

Pain

Chronic pain

GRE

T1 FS Arthrogram T1 FS Arthrogram

Chronic pain

Radiohumeral Synovial Fringe

- Arises from the embryonic joint septum and almost always present anteriorly and posteriorly.
- Embryos rarely have a lateral fringe
- Adults can develop a lateral fringe over time.
- Enlargement, hardening, & lateral extension is likely a manifestation of underlying derangement or degeneration.

Synovial Fringe

Duparc F. Surg Radiol Anat (2002) 24:302-307

Distribution

Lateral

Dorsal

Ventral

50 Specimens

Duparc F. Surg Radiol Anat (2002) 24:302-307

Isogai S. J Shoulder Elbow Surg. 2001; 10:169-181

Synovial Fringe/Posterolateral Impingement

Athletes engaged in repetitive motions such as throwing or golfing are prone Complain of pain, clicking or snapping, swelling, or inability to fully extend. Flexor-pronation test—not helpful Anconeous soft spot tenderness—most helpful

Kim D. Amer J Sports Med. 2006, Vol 34, Num 3, p. 438-444

Fatty

Nerves

Fibrous

Duparc F. Surg Radiol Anat (2002) 24:302-307

Huang G. Eur Radiol (2005) 15: 2411-2414

Flexed

Extended

12 yo boy with a snapping elbow

Extension

PD T2* В A D C

Flexion

Biceps Tendon Anatomy

Chew ML. Radiographics 2005; 25:1227-1237

Above elbow, flat surface faces anterior.

As the tendon courses distally, it moves in a more posterior and lateral position and twists 90°, so that the anterior surface faces laterally.

Distal attachments to the radial tubercle and the fibrosus lacertus (bicipital aponeurosis)

Flexed elbow ABducted shoulder Supination of the forearm Minimizes partial voluming effects Improved visualization of insertion Center of the magnet optimizes fat supression

Chew ML. Radiographics 2005; 25:1227-1237

Biceps Brachii

Injury typically seen in weighlifters

- Forced hypertension applied to a flexed and supinated forearm
- With complete tear, muscle may retract or be held in place by the lacertus fibrosis (bicipital aponeurosis)
- Tear can be mimicked by a partial tear, tendonosis, and cubital bursitis

Melloni P. Eur J Radiol 54 (2005) 303-313.

Complete tear biceps

Intact lacertus fibrosus

Chew ML. Radiographics 2005; 25:1227-1237

Complete tear repair

Chew ML. Radiographics 2005; 25:1227-1237

Partial tears of the biceps brachii

- Increase signal within the distal biceps tendon
- 55% demonstrated bicipioradial bursitis
- Insidious onset was more common than an acute traumatic onset of pain
- No echymosis or loss of function

Partial tears of the biceps brachii

Williams BD. Skelet Rad (2001) 30:560-564.

Partial tear--FABS

PD

PD FS

Chew ML. Radiographics 2005; 25:1227-1237

Bicipitalradial bursa

 No tendon sheath.
There is a paratenon surrounded by the bicipitoradial bursa.

Becomes more compressed with pronation.

Shaf AY. Radiology 1999;212:111-116

Bicipitoradial Bursa

Shaf AY. Radiology 1999;212:111-116

Chung C. Clin Ortho:383, pp. 162-174

8

ROT :

Bicipitoradial bursitis

- Mass in cubital fossa
- Most have pain
- Some experience impairment in motion
- If there is extensor muscle weakness, look for compression of the deep and superficial branches of the radial n.
- Etiologies include RA, partial tear of the biceps tendon, and repetitive trauma

Shaf AY. Radiology 1999;212:111-116

Bicipitoradial bursitis

No contact with adjacent nerves

Displaces radial d. and s. branches in a woman who presented with forearm pain, a mass, and extensor m. weakness.

Cubital Tunnel

Deep borders are the medial epicondyle, the trochlea and the posterior band of the ulnar collateral ligament

Roof is the arcuate or Osborne's ligament, a retinaculum between the ulnar and humeral heads of the flexor carpi ulnaris muscle—extends from the olecranon to the medial epicondyle

Cubital tunnel

Posterior recurrent ulnar a.

Ulnar n. Arcuate ligament

M

Kim YS. Skelet Radiol 1998.; 27:419-426.

Cubital Tunnel

Kim YS. Skelet Radiol 1998.; 27:419-426.

Boles CA. AJR:174, Jan 2000

T1

Kim YS. Skelet Radiol 1998.; 27:419-426.

Flexion

Kim YS. Skelet Radiol 1998.; 27:419-426.

Chung C. Clin Ortho:383, pp. 162-174

Ulnar nerve entrapment

- Most frequent nerve at the elbow due to its fibro-osseous tunnel
- Ganglion, accessory muscle or abnormal muscular insertion, pannus, osteophyte, etc.
- Ulnar n. often thickened above and within tunnel, and tapering more distally

Melloni P. Eur J Radiol 54 (2005) 303-313.

Ulnar n. entrapment

T1 FS GRE

STIR

Ly JQ. J Clin Imag 29 (2005) 278-282

Melloni P. Eur J Radiol 54 (2005) 303-313.

Anconeous epitrochlearis

Sag STI R

ATAT

Anconeous epitrochlearis

Jeon IH. Skelet R (2005) 34:103-10

0 5.0 4.5 5 92x256

T1

88

0

0.5 T1 192x256 688 90

16.0

Anconeous epitrochlearis

Ol

Anconeus

Flexor carpi ulnaris h. and u. heads

Cubital tunnel syndrome

2nd most common compression neuropathy of the upper extremity after carpal tunnel

Causes include medial trochlear osteophyte, incongruity between trochlea and olecranon, soft tissue mechanical compression during flexion, and traction

Compression or traction?

00

1350

 Cadavers without cubital tunnel stenosis
Cubital tunnel decreases in size with flexion

Extra and intraneural pressures are lowest at about 45 degrees

Gelberman RH. J Bone Joint Surg. 1998:80-A;4 492-501.

Compression or traction?

1350

- Pressures rise quickly at flexion greater than 90 degrees
- Intraneural pressures rise faster and higher than extraneural pressures
- Ulnar n. cross-sectional area decreased as the cubital tunnel decreased without effacement of surrounding fat

Suggests traction may be more important than compression in many symptomatic patients

Gelberman RH. J Bone Joint Surg. 1998:80-A;4, 492-501.

Implications?

- Decompressing the ulnar n. without transposing it out of the cubital tunnel or decompressing it through a medial epicondylectomy would not likely treat any symptoms arising from traction.
- Lack of fat effacement within the cubital tunnel at imaging does NOT exclude cubital tunnel syndrome, even in the flexed position

Ulnar nerve dislocation

Can be a cause of medial elbow pain or snapping/catching sensation

- Medial dislocation over the medial epicondyle
- Absent arcuate ligament between the ulnar and humeral heads of the flexor carpi ulnaris

Extension

2

Jacobson, JA. Ra

Flexion

Snapping triceps syndrome

- Medial subluxation/dislocation of both the ulnar nerve and the medial head of the triceps over the medial epicondyle
- Difficult to distinguish clinically from ulnar nerve dislocation
- Isolated ulnar nerve translocation in the setting of snapping triceps syndrome will not stop the problem

Extension

Flexion

Awaya H. AJR:177, Dec 2001 Boles CA. AJR:174, Jan 2000 Cain EL. Amer J Sports Med 2003; 3(4):621-635 Chew ML. Radiographics 2005; 25:1227-1237 Chung C. Clin Ortho: 383, pp. 162-174 Duparc F. Surg Radiol Anat (2002) 24:302-307 Fukase N, Skelet Radiol 2005 Jun 7 Gelberman RH. J Bone Joint Surg. 1998:80-A;4, 492-501. Huang G. Eur Radiol (2005) 15: 2411-2414 Isogai S. J Shoulder Elbow Surg. 2001; 10:169-181 Jacobson, JA. Radiology 2001;220:601-605 Jeon IH. Skelet Radiol (2005) 34:103-107 Kijowski R Skeletal Radiol(2005) 34:1-8 Kim D. Amer J Sports Med. 2006, Vol 34, Num 3, p. 438-444 Munshi M. Radiology 2004; 231:797-803 Shaf AY. Radiology 1999;212:111-116