Pain in the throwing athlete

- Usually medial
- Usually (85%) during acceleration phase
- Etiology: Ulnar collateral ligament tears, ulnar neuritis, flexor-pronator strain/tear/tendonosis, medial epicondyle avulsion, valgus extension overload syndrome, olecranon stress fractures, OCD, loose bodies

Ulnar Collateral Ligament

- Most important to exclude an injury to the ulnar collateral ligament
- Anterior band from the medial epicondyle to the sublime tubercle
- Injury usually not a difficult clinical question
Ulnar Collateral Ligament

Partial tear

Complete tear

T2 FS

Valgus extension overload syndrome

- Repetitive high loads during throwing may lead to anterior band UCL attenuation & failure
- Carry angle (nl 11 men and 13 women) may increase to >15 degrees
- Valgus stress leads to “kissing lesion” osteophytes on posteromedial olecranon/trochlea

Valgus extension overload syndrome

- Subtle laxity may contribute to medial soft tissue and posterior compartment osseous disorders.
- Posterior compartment osteophytes and bodies are the most common cause for surgery among baseball players.

Snapping Elbow

- Subluxation of the medial head of the triceps
- Subluxation of the ulnar nerve
- Intra-articular factors, such as torn annular ligament
- Synovial folds
- Intraarticular bodies

Fukase N, Skelet Radiol 2005 Jun 7
Synovial Folds

- Commonly seen within the elbow as a remnant of joint development
- May simulate intra-articular bodies
- Normal anterior and posterior fat pads may mimic synovial folds

Awaya H. AJR:177, Dec 2001
Synovial fold

Normal nodularity
Synovial Fold Syndrome

- Patients present with locking or limitation of full extension because of impingement
- Superoposterior plicae in the superior olecranon recess
- Both symptomatic and asymptomatic patients may have thickened folds

Awaya H. AJR:177, Dec 2001
Pain

Chronic pain

Chronic pain

GRE

T1 FS Arthrogram

T1 FS Arthrogram

Awaya H. AJR:177, Dec 2001
Radiohumeral Synovial Fringe

- Arises from the embryonic joint septum and almost always present anteriorly and posteriorly.
- Embryos rarely have a lateral fringe
- Adults can develop a lateral fringe over time.
- Enlargement, hardening, & lateral extension is likely a manifestation of underlying derangement or degeneration.

Synovial Fringe

Distribution

50 Specimens

Synovial Fringe/Posterolateral Impingement

- Athletes engaged in repetitive motions such as throwing or golfing are prone to complain of pain, clicking or snapping, swelling, or inability to fully extend.
- Flexor-pronation test—not helpful
- Anconeous soft spot tenderness—most helpful

Fatty

Nerves

Fibrous

12 yo boy with a snapping elbow

Fukase N, Skelet Radiol 2005 Jun 7
Fukase N, Skelet Radiol 2005 Jun 7
Lateral elbow pain
Biceps Tendon Anatomy

- Above elbow, flat surface faces anterior.
- As the tendon courses distally, it moves in a more posterior and lateral position and twists 90°, so that the anterior surface faces laterally.
- Distal attachments to the radial tubercle and the fibrosus lacertus (bicipital aponeurosis)

Chew ML. Radiographics 2005; 25:1227-1237
FABS

- Flexed elbow
- AB ducted shoulder
- Supination of the forearm
- Minimizes partial voluming effects
- Improved visualization of insertion
- Center of the magnet optimizes fat suppression
Biceps Brachii

- Injury typically seen in weightlifters
- Forced hypertension applied to a flexed and supinated forearm
- With complete tear, muscle may retract or be held in place by the lacertus fibrosis (bicipital aponeurosis)
- Tear can be mimicked by a partial tear, tendonosis, and cubital bursitis
Biceps tear

Complete tear biceps

Intact lacertus fibrosus

Chew ML. Radiographics 2005; 25:1227-1237
Complete tear repair

Chew ML. Radiographics 2005; 25:1227-1237
Partial tears of the biceps brachii

- Increase signal within the distal biceps tendon
- 55% demonstrated bicipioradial bursitis
- Insidious onset was more common than an acute traumatic onset of pain
- No echymosis or loss of function
Partial tears of the biceps brachii

Partial tear--FABS

Chew ML. Radiographics 2005; 25:1227-1237
Bicipital radial bursa

- No tendon sheath.
- There is a paratenon surrounded by the bicipitoradial bursa.
- Becomes more compressed with pronation.

Shaf AY. Radiology 1999;212:111-116
Bicipitoradial Bursa

Bursography

Shaf AY. Radiology 1999;212:111-116

Chung C. Clin Ortho:383, pp. 162-174
Bicipitoradial bursitis

- Mass in cubital fossa
- Most have pain
- Some experience impairment in motion
- If there is extensor muscle weakness, look for compression of the deep and superficial branches of the radial n.
- Etiologies include RA, partial tear of the biceps tendon, and repetitive trauma

Shaf AY. Radiology 1999;212:111-116
Bicipitoradial bursitis

No contact with adjacent nerves

Displaces radial d. and s. branches in a woman who presented with forearm pain, a mass, and extensor m. weakness.

Shaf AY. Radiology 1999;212:111-116
Cubital Tunnel

Deep borders are the medial epicondyle, the trochlea and the posterior band of the ulnar collateral ligament

Roof is the arcuate or Osborne’s ligament, a retinaculum between the ulnar and humeral heads of the flexor carpi ulnaris muscle—extends from the olecranon to the medial epicondyle
Cubital tunnel

Cubital Tunnel


Boles CA. AJR:174, Jan 2000
Kim YS. Skelet Radiol
Ulnar nerve entrapment

- Most frequent nerve at the elbow due to its fibro-osseous tunnel
- Ganglion, accessory muscle or abnormal muscular insertion, pannus, osteophyte, etc.
- Ulnar n. often thickened above and within tunnel, and tapering more distally

Ulnar n. entrapment

T1 FS GRE

STIR

ganglion

Ly JQ. J Clin Imag 29 (2005) 278-282

Anconeous epitrochlearis

Sag
STI
R

Flexor carpi ulnaris h. and u. heads

Jeon IH. Skelet R (2005) 34:103-10
Cubital tunnel syndrome

- 2nd most common compression neuropathy of the upper extremity after carpal tunnel
- Causes include medial trochlear osteophyte, incongruity between trochlea and olecranon, soft tissue mechanical compression during flexion, and traction
Compression or traction?

- Cadavers without cubital tunnel stenosis
- Cubital tunnel decreases in size with flexion
- Extra and intraneural pressures are lowest at about 45 degrees

Compression or traction?

- Pressures rise quickly at flexion greater than 90 degrees
- Intraneural pressures rise faster and higher than extraneural pressures
- Ulnar n. cross-sectional area decreased as the cubital tunnel decreased without effacement of surrounding fat
- Suggests traction may be more important than compression in many symptomatic patients

Implications?

- Decompressing the ulnar n. without transposing it out of the cubital tunnel or decompressing it through a medial epicondylectomy would not likely treat any symptoms arising from traction.

- Lack of fat effacement within the cubital tunnel at imaging does NOT exclude cubital tunnel syndrome, even in the flexed position.
Ulnar nerve dislocation

- Can be a cause of medial elbow pain or snapping/catching sensation
- Medial dislocation over the medial epicondyle
- Absent arcuate ligament between the ulnar and humeral heads of the flexor carpi ulnaris

Jacobson, JA. Radiology 2001;220:601-605
Snapping triceps syndrome

- Medial subluxation/dislocation of both the ulnar nerve and the medial head of the triceps over the medial epicondyle
- Difficult to distinguish clinically from ulnar nerve dislocation
- Isolated ulnar nerve translocation in the setting of snapping triceps syndrome will not stop the problem

Jacobson, JA. Radiology 2001;220:601-605
Extension

Flexion

Jacobson, JA. Radiology 2001;220:601-605
Awaya H. AJR:177, Dec 2001
Boles CA. AJR:174, Jan 2000
Chew ML. Radiographics 2005; 25:1227-1237
Chung C. Clin Ortho:383, pp. 162-174
Fukase N, Skelet Radiol 2005 Jun 7
Jacobson, JA. Radiology 2001;220:601-605
Jeon IH. Skelet Radiol (2005) 34:103-107
Munshi M. Radiology 2004; 231:797-803
Shaf AY. Radiology 1999;212:111-116