Primary Bone Malignancy: Common Neoplasms, Imaging Features, & Clinical Implications

> Suzanne Shepherd 3 March 2011

Goals:

- Review criteria utilized in diagnosis of bone tumors
- Discuss role of multimodality imaging
 - ACR appropriateness criteria
 - Staging
- Discuss some of the most common malignant primary bone tumors and distinguishing features in deriving useful ddx

Primary Bone Malignancy

IMAGING CRITERIA

Characteristics in Diagnosis of Bone Tumors

- Patient age (#1 factor to consider) & gender
- Tumor location
- Lesion margin
- Matrix formation
- Periosteal reaction

Generalizations by patient age

(adapted from Table 1, Miller TT. Rad 2008; 246:662-674)

Age (yrs)	Benign	Malignant
< 20	Fibrous cortical defect/NOF	Leukemia
	Simple bone cyst	Ewings sarcoma
	ABC	Osteosarcoma
	Chondroblastoma	(conv, periost, telang)
	LCH	Mets (rare)
	Osteoblastoma	NBoma
	Osteoid osteoma	RBoma
	Osteofibrous dysplasia	Rhabdomyosarcoma
	Chondromyxoid fibroma	Hodgkin lymphoma
	FD	
	Enchondroma	
20-40	Enchondroma	Osteosarcoma (parosteal)
	GCT	Adamantinoma
	Osteoblastoma	
	Osteoid osteoma	
	Chondromyxoid fibroma	
	FD	
> 40	FD	Mets (most common)
	Pagets dis	Myeloma
	Non-Hodgkin Lymphoma	
	Chondrosarcoma	
	Malig fibrous histiocytoma	
	O-sarc (d/t Pagets or rad'n)	

Generalizations by patient age & location

Location

- Flat vs. tubular bone
- Longitudinal location:
 - Epiphyseal vs. metaphyseal vs. diaphyseal
- Axial location:
 - Central vs. eccentric
 - Cortical vs. juxtacortical vs. soft tissue

(www.radiologyassistant.nl/en/494e15cbf0d8d)

Generalizations about Location

- Epiphyseal:
 - Subchondral cyst (sk mature, OA)
 - Chondroblastoma (sk immature)
- Metaphyseal: active area of bone formation
 - NOF
 - Osteochondroma
 - Sarcomas
- Diaphyseal:
 - Ewing sarcoma

Courtesy, George Nomikos

Generalizations about Location

• Epiphyseal:

- Subchondral cyst (sk mature, OA)
- Chondroblastoma (sk immature)
- Metaphyseal: active area of bone formation
 - NOF
 - Osteochondroma
 - Sarcomas
- Diaphyseal:
 - Ewing sarcoma

Dr. Sartoris Teaching File

Generalizations about Location

• Epiphyseal:

- Subchondral cyst (sk mature, OA)
- Chondroblastoma (sk immature)
- Metaphyseal: active area of bone formation
 - NOF
 - Osteochondroma
 - Sarcomas
- Diaphyseal:
 - Ewing sarcoma

Courtesy , George Nomikos

Pattern of Bone Destruction: Lesion Margin

- Type I: Geographic
 - A: Well-defined, with surrounding sclerosis
 - B: Well-defined, without surrounding sclerosis
 - C: Ill-defined
- Type II: Motheaten
- Type III: Permeative

Geographic Lesions, Type I

Courtesy, George Nomikos

Margins reflect biological activity

• Nonagressive

- Geographic, well-defined lesion
- Narrow zone of transition
- Sclerotic lesion margins
- Aggressive
 - Permeative, moth-eaten
 - Wide zone of transition
 - Nonsclerotic lesion margins

Courtesy, George Nomikos

Margins reflect biological activity

Nonagressive

- Geographic, well-defined lesion
- Narrow zone of transition
- Sclerotic lesion margins
- Aggressive
 - Permeative, moth-eaten
 - Wide zone of transition
 - Nonsclerotic lesion margins

Metastatic breast cancer

Dr. Sartoris Teaching File

Tumor Matrix

- Osteoid
 - Ivory
 - Fluffy
 - Cloud-like
- Chondroid
 - Arcs/rings
 - Punctate
 - Stippled
- Fibrous
 - Ground glass
 - Hazy

Osteosarcoma

Courtesy, George Nomikos

Tumor Matrix

- Osteoid
 - lvory
 - Fluffy
 - Cloud-like
- Chondroid
 - Arcs/rings
 - Punctate
 - Stippled
- Fibrous
 - Ground glass
 - Hazy

Enchondroma

Courtesy, George Nomikos

Tumor Matrix

Fibrous dysplasia

- Osteoid
 - lvory
 - Fluffy
 - Cloud-like
- Chondroid
 - Arcs/rings
 - Punctate
 - Stippled
- Fibrous
 - Ground glass
 - Hazy

Dr. Sartoris Teaching File

(www.radiologyassistant.nl/en/494e15cbf0d8d)

Unilamellated

• Non-aggressive:

- Solid
- Buttressing
- Expansion
- Septation
- Aggressive:
 - Codman triangle
 - Sun-burst
 - Hair-on-end
 - Laminated

Miller T T Radiology 2008;246:662-674

Multilamellated

- Non-aggressive:
 - Solid
 - Buttressing
 - Expansion
 - Septation
- Aggressive:
 - Codman triangle
 - Sun-burst
 - Hair-on-end
 - Laminated

Miller T T Radiology 2008;246:662-674

Periosteal OGS

• Non-aggressive:

- Solid
- Buttressing
- Expansion
- Septation
- Aggressive:
 - Codman triangle
 - Sun-burst
 - Hair-on-end
 - Laminated

Courtesy, George Nomikos

Lesion Number

- Monostotic
- Polyostotic
 - Benign
 - LCH
 - Enchondromatosis
 - FD
 - Malignant
 - Mets/Myeloma

Solitary enchondroma

UCSD Thornton, Evelyn Fliszar

Lesion Number

- Monostotic
- Polyostotic
 - Benign
 - LCH
 - Enchondromatosis
 - FD
 - Malignant
 - Mets/Myeloma

Multiple enchondromas

Georgetown University Hospital

Primary Bone Malignancy

ROLE OF MULTIMODALITY IMAGING

- Radiographs for initial evaluation of bone lesion
- Additional imaging dept on 1 of 4 conditions:
 - 1. nl XR, but pt has persistent sxs
 - Lytic lesions not seen on XR till 30-50% loss of mineralization
 - If pt can localize sxs, go to MR; if not, go to scintigraphy
 - 2. abnl XR, clinician suspects mets or MM on basis of hx, lab values or both
 - Next step, bone scan
 - 3. abnl XR, non-aggressive-appearing tumor
 - 4. abnl XR, aggressive-appearing primary bone tumor

- Radiographs for initial evaluation of bone lesion
- Additional imaging dept on 1 of 4 conditions:
 - 1. nl XR, but pt has persistent sxs
 - Lytic lesions not seen on XR till 30-50% loss of mineralization
 - If pt can localize sxs, go to MR (r/o occult frx, infection, etc)
 - If not, go to scintigraphy
 - 2. abnl XR, clinician suspects mets or MM on basis of hx, lab values or both
 - 3. abnl XR, non-aggressive-appearing tumor
 - 4. abnl XR, aggressive-appearing primary bone tumor

- Radiographs for initial evaluation of bone lesion
- Additional imaging dept on 1 of 4 conditions:
 - 1. nl XR, but pt has persistent sxs
 - 2. abnl XR, clinician suspects mets or MM on basis of hx, lab values or both
 - Next step, bone scan
 - 3. abnl XR, non-aggressive-appearing tumor
 - 4. abnl XR, aggressive-appearing primary bone tumor

- Radiographs for initial evaluation of bone lesion
- Additional imaging dept on 1 of 4 conditions:
 - 1. nl XR, but pt has persistent sxs
 - 2. abnl XR, clinician suspects mets or MM on basis of hx, lab values or both
 - 3. abnl XR, non-aggressive-appearing tumor
 - 4. abnl XR, aggressive-appearing primary bone tumor

- Radiographs for initial evaluation of bone lesion
- Additional imaging dept on 1 of 4 conditions:
 - 1. nl XR, but pt has persistent sxs
 - 2. abnl XR, clinician suspects mets or MM on basis of hx, lab values or both
 - 3. abnl XR, non-aggressive-appearing tumor
 - 4. abnl XR, aggressive-appearing primary bone tumor

Modalities

- Conventional radiographs
 - Ddx is best derived from XR
- CT/MR
 - Pre-operative assessment, biopsy, & staging
 - Further matrix characterizatior
 - ST component
- Bone scintigraphy
 - Degree of lesion radiotracer uptake
 - Lesion multiplicity

Courtesy, Evelyn Fliszar

Modalities

- Conventional radiographs
 - Ddx is best derived from XR
- CT/MRI
 - Pre-operative assessment, biopsy, & staging
 - Further matrix characterization
 - ST component
- Bone scintigraphy
 - Degree of lesion radiotracer uptake
 - Lesion multiplicity

Courtesy, Evelyn Fliszar

Modalities

- Conventional radiographs
 - Ddx is best derived from XR
- CT/MRI
 - Pre-operative assessment, biopsy, & staging
 - Further matrix characterizatior
 - ST component
- Bone scintigraphy
 - Degree of lesion radiotracer uptake
 - Lesion multiplicity

Courtesy, Evelyn Fliszar

Staging

- 2 systems
 - Enneking 1st in 1980 (3 criteria)
 - American Joint Committee on Cancer (AJCC) in 1983 and revised in 2003 (4 criteria)
 - Does NOT apply to lymphoma or myeloma

Enneking Staging System for Primary Malignant Bone Tumors

- 1. Tumor extent
 - T1: intracompartmental
 - T2: extracompartmental
- 2. Mets
 - M0: no mets
 - M1: + mets
- 3. Histologic grade
 - G1: low grade (<25% risk of mets)
 - G2: high grade (>25% risk of mets)

 INTRAcompartmental = entirely intraosseous or parosseous (ex: parosteoal osarc)

Stacy, G. S. et al. Am. J. Roentgenol. 2006;186:967-976

Enneking Staging System for Primary Malignant Bone Tumors

- Based on 3 criteria
- 1. Tumor extent
 - T1: intracompartmental
 - T2: extracompartmental
- 2. Mets
 - M0: no mets
 - M1: + mets
- 3. Histologic grade
 - G1: low grade (<25% risk of mets)
 - G2: high grade (>25% risk of mets)

• **EXTRAcompartmental** = intraoss. w/ST-extension or parosseous w/ intraoss. or extrafascial extension (ex: parosteoal o-sarc)

Stacy, G. S. et al. Am. J. Roentgenol. 2006;186:967-976

Enneking Staging System for Primary Malignant Bone Tumors

- Based on 3 criteria
- 1. Tumor extent
 - T1 = intracompartmental
 - T2 = extracompartmental
- 2. Mets
 - M0 = no mets
 - M1 = + mets
- 3. Histologic grade
 - G1 = low grade (<25% risk of mets)
 - G2 = high grade (>25% risk of mets)

TABLE 2:	Enneking Staging System		
	[14] for Primary Malignant		
	Tumors of Bone		

Stage	Tumor	Metastases	Grade
IA	T1	M0	G1
IB	T2	MO	G 1
IIA	T1	MO	G2
IIB	T2	MO	G2
Ш	T1 or T2	M1	G1 or G2

Note—T1 = tumor is intracompartmental, T2 = tumor is extracompartmental, M0 = no regional or distant metastasis, M1 = regional or distant metastasis, G1 = low grade, G2 = high grade.

Stacy, G. S. et al. Am. J. Roentgenol. 2006;186:967-976

AJCC Staging System for Primary Malignant Bone Tumors (after 1/1/2003)

- Based on 4 criteria
 (bold = worse px):
- 1. Tumor size:
 - T1 = < 8cm
 - T2 if > 8cm
 - T3 if skip mets
- 2. Regional LN mets:
 - N0 = absent
 - N1 = present
- 3. Mets:
 - M1a = lung mets only
 - M1b = mets other sites/LNs
- 4. Grade:
 - G1 = well-, G2 = moderately-, G3 = poorly-, G4 = un-differentiated

Stage	Tumour	Lymph node	Metastases	Grade
IA	T1	N0	M0	G1 or G2
IB	T2	N0	M0	G1 or G2
IIA	T1	N0	M0	G3 or G4
IIB	T2	N0	M0	G3 or G4
III	T3	N0	M0	Any G
IVA	Any T	N0	M1a	Any G
IVB	Any T	N1	Any M	Any G
IVB	Any T	Any N	M1b	Any G
AJCC Staging System for Primary Malignant Bone Tumors (after 1/1/2003)

- Rather than intra- or extra-osseous tumor extent, tumor size found to be better px indicator
- Stage III if skip mets
- Stage IV if distant mets:
 - Lung mets are IVA
 - Elsewhere is IVB

Stage	Tumour	Lymph node	Metastases	Grade
IA	T1	N0	M0	G1 or G2
IB	Т2	N0	M0	G1 or G2
IIA	T1	N0	M0	G3 or G4
IIB	Т2	N0	M0	G3 or G4
III	Т3	N0	M0	Any G
IVA	Any T	N0	M1a	Any G
IVB	Any T	N1	Any M	Any G
IVB	Any T	Any N	M1b	Any G

MRI vs CT

- MRI superior to CT in detecting intraosseous extent
- Best sequence is debatable:
 - For osarc, must include a T1-wted spin echo
 - STIR may overestimate intraosseous tumor when compared to histopath specimens

Epiphyseal involvement

- Physis was thought to be barrier to tumor extension
- MRI = extension of intermed T1 SI across GP w/ physeal destruction
 - Hi sensitivity
 - Low specificity due to FP cases from low SI red marrow at the physis
- T1 more specific and STIR more sensitive to determine epiphyseal involvement

Sample MR protocol for assessing primary tumor

- Large field-of-view coronal or sagittal sequence covering the entire bone
- Small field of view sequences to cover the primary tumor in its entirety:
 - T1- and fat-suppressed T2-weighted sequences in the axial plane
 - T1- and fat-suppressed T2-weighted sequences performed in at least one orthogonal plane

Skip mets

- Intramedullary

 osteosarcoma ({) with
 skip mets (arrows) on
 coronal T1 MR image
- Must include entire length of bone

Courtesy, George Nomikos, AFIP

Determining joint invasion:

- Important for surgical planning:
 - Limb sparing surgery
 - Vs. joint amputation
- Joint effusion does not
 = Joint involvement

Courtesy, George Nomikos, AFIP

Joint invasion: osteosarcoma (*) along ACL (^)

Courtesy, George Nomikos, AFIP

Role of IV Gad

- Limited value b/c of inherent contrast b/t the tumor and normal marrow signal

 Intermed/low T1 and nl/high SI marrow fat
- Helpful to differentiate solid f/ hemorrhage & necrosis
 - Aids in biopsy planning
 - Arguably, T2 can be of similar utility
- Dynamic CE-MRI \rightarrow not useful in initial staging
 - May help discern tumor f/ reactive edema post chemotx or to see residual tumor postop

Bone Scan (Scintigraphy)

- Can overestimate extent of intraoss tumor d/t falsely extended uptake
- May show apparent joint involvement
- Correlates poorly with path specimens, underestimates and overestimates

Huang AJ, et al. Imaging of Bone Tumors and Tumor-Like Lesions: Techniques and Applications. 2009; 183-98.

Role of advanced imaging

- Traditionally, relied on bone scan during initial w/u
- More recent advances include WB MRI
 - Improved techniques have reduced imaging time to < 1hr
 - (rolling platform, parallel imaging, phased-array coils)
- WB MRI better than PET for brain & liver mets
- Chest CT preferred for evaluating lung mets, lymph nodes
 PET limited for detecting sub-cm nodules
- Currently, PET best to confirm suspicious or equivocal findings & assess areas not in FOV on other modalities
- MRI best for skip lesion detection
 - PET shows promise in peds as red marrow can limit assessment for skip mets on MRI & bone scan

Sample images Whole Body MRI – LCH (arrowhead)

Daldrup-Link, et al. AJR 2001:177

Role of whole body MRI and FDG-PET

 Some evidence that WB-MRI + PET have higher sensitivity for primary bone mets detection than skeletal scintigraphy

Primary Bone Malignancy

OSTEOSARCOMA

Osteosarcoma (Osteogenic Sarcoma (OGS))

- Malignant mesenchymal neoplasm which makes osteoid (arrows) or immature bone
- Histo:
 - Osteoblastic
 (predominates in 50-80%)
 - Chondroblastic
 - Fibroblastic

Murphey MD, RG 1997;17:1205-1231

Osteosarcoma Types

- Intramedullary (75%)
 - High-grade*
 - Telangiectatic*
 - Low-grade
 - Small cell
 - Osteosarcomatosis*
 - Gnathic tumors
- Surface (10%)
 - Intracortical
 - Parosteal*
 - Periosteal*
 - High-grade surface tumors
- Extraskeletal
- Secondary (malignant transformation)*

Murphey MD, RG 1997;17:1205-1231

Osteosarcoma – Epidemiology

- Most common primary bone malignancy in pts
 - < 20 yo
 - <6 or >60 yo unusual
- 2nd most common Ewi in all ages following myeloma Choi
- More common in white pts
- M:F, 1.5:1

Figure VIII.3: Bone cancer age-adjusted incidence* rates by type and sex, age <20, all races, SEER, 1975-95

Murphey MD, RG 1997; http://seer.cancer.gov/publications/childhood/bone.pdf

Osteosarcoma Treatment

- Chemotx
- Wide surgical resection
- Limb salvage if possible (or amputation)

Osarc - Metastatic disease

- Lungs
 - Spontaneous ptx
- Regional/distant LNs
- Bones

Osarc - Metastatic disease

- Lungs
- Regional/distant LNs
- Bones:
 - Skip mets (MR of entire length of bone)
 - Intramedullary osteosarcoma ({) with skip mets (arrows) on coronal T1 MR image

Courtesy, George Nomikos

Osteosarcoma: high-grade intramedullary

- Also called central or conventional
- 75% of all osarcs
- 15-25 yo
- 5 yr survival of 60-80%
- About the knee (50-55%)
 - Femur > tibia > humerus

Osteosarcoma: high-grade intramedullary

- 90% metaphyseal
 - Majority cross to epiphysis
- 5-10% diaphyseal
- < 1% epiphyseal
- (Murphey, AFIP notes)

Osteosarcoma: high-grade intramedullary - XR

- Mixed sclerosis/lysis
- Aggressive periostitis & ST mass
- Violates cortex w/o expanding it
- Large at dx, > 6cm
- Rapid growth (doubles in 20-30 days)

Osteosarcoma: high-grade intramedullary - MR

- Essential for staging and preoperative planning
- Tumor is intermediate SI on T1

Osteosarcoma: high-grade intramedullary - MR

- Tumor is high SI on T2
- Mineralized matrix = areas of low SI on both T1 and T2
- Areas of hemorrhage = high SI on both T1 and T2
- Areas of necrosis (ST or bone) = low T1, high T2

- 4.5-11% of all osarcs
- Sim distribution to intramedullary:
 - Most around knee
 - 90% metaphyseal, 10% diaphyseal
 - May have better px t/ others (68% 5-yr survival)
- Can be secondary (FD, Paget, & after XRT)
- Rarely extraskeletal

- Must have hemorrhagic, cystic, or necrotic spaces occupying > 90% lesion
- Cystic cavities = cavernous vessels, blood filled spaces
 – Fluid/fluid levels

- Largely osteolytic & expansile
 - Geographic bone destruction
 - Wide zone of transition
- Osteoid formation in periphery
 - "Donut sign" on bone scan
 - RN accumulation in periphery, central photopenia

- Aggressive periosteal rxn
- Cortical destruction
- ST mass
- Pathologic frx

... Not to be confused with Aneurysmal Bone Cyst (ABC)

- Term aneurysmal is based on its radiographic appearance
- Interval of 4 mos b/t images
- Rapid lesion expansion has been reported

 http://www.bonetumor.org/tumorsbone/aneurysmal-bone-cyst

... Not to be confused with Aneurysmal Bone Cyst (ABC)

- Expansile osteolytic lesion with a thin wall, containing blood-filled cystic cavities
- True cause unknown (possibly posttraumatic)

Ddx of Secondary ABC includes . . .

- Giant cell tumor of bone (distal radius)
- Osteoblastoma
- Chondroblastoma

Courtesy, Brady Huang

Ddx of Secondary ABC includes . . .

- Giant cell tumor of bone
- Osteoblastoma
- Chondroblastoma

Ddx of Secondary ABC includes . . .

- Osteoblastoma
 - Chondroblastoma

Courtesy, George Nomikos , AFIP

Osteosarcomatosis

- Also known as multifocal osteosarcoma, or multiple sclerotic osteosarcoma
- Multiple intraosseous foci of osarc at time of presentation
- Uncommon, 3-4% of osarc cases

Georgetown University Hospital

Osteosarcomatosis

- Possibly represents rapidly progressive metastatic disease
 - Murphey strongly believes this
- Rapidly appearing, usually symmetric, sclerotic lesions

Georgetown University Hospital

Osteosarcomatosis

- Typically a large, dominant lesion can be identified
- Dominant lesion:
 - Ill-defined margins
 - Aggressive periosteal rxn
 - Cortical disruption
 - Adjacent ST extension
 - Can be sclerotic or lytic

Georgetown University Hospital
Osteosarcomatosis

- Secondary foci:
 - Smaller
 - More sclerotic
 - Better defined
 - Lack periosteal rxn or cortical destruction

Georgetown University Hospital

Osteosarcomatosis

- Horrible prognosis
- Despite chemotherapy, aggressive surgery, reported mean survival of 12 months

Georgetown University Hospital

Osteosarcomatosis

Georgetown University Hospital

Surface osteosarcoma: Parosteal OGS

- 65% of all juxtacortical osteosarcomas
- 3rd-4th decades of life
- Slight female predominance
- 80-90% long-term survival
- Presents as palpable mass

- Metaphyseal (80-90%)
- Post distal femur (50-65%)
- Arise f/ outer layer of periosteum
- Exophytic sclerotic mass

- Large, lobulated, ossific, juxtacortical mass
- "Cauliflower-like"
- Excellent px
 - Surgical resection
 - No neoadjuvant chemotx or XRT

- CT & MR
- Important for planning surgical resection
 - Show ST-extent
 - Determine if medullary involvement
 - Look for lucent cleavage plane

- Determine medullary involvement (*)
 - Deep medullary invasion may require limb salvage
 - Joint replacement if involved

Parosteal OGS Mimic = Myositis Ossificans

- More dense peripherally
- Usually not attached to cortex

Parosteal OGS Mimic = Myositis Ossificans

- 25% of all juxtacortical osteosarcomas
- 2nd 3rd decades, M>F
- Diaphyseal or metadiaphyseal
- Femur & tibia >> ulna & humerus
- Arise f/ deep layer of periosteum
- Cortical thickening, scalloping, w/o intramedullary invasion
- 55-83% long-term survival

- Broad-based surface ST mass
- Causes scalloping of thickened underlying cortex, w/o intramedullary invasion
- Periosteal rxn perpendicular to bone length axis

- Perpendicular periosteal rxn into a broad-based ST mass
- Codman's triangles at sup & inf margins of the lesion

- Perpendicular periosteal rxn into a broad-based ST mass
- Codman's triangles at sup & inf margins of the lesion

- Perpendicular periosteal rxn into a broad-based ST mass
- Codman's triangles at sup & inf margins of the lesion

- ST mass of intermed T1
 SI
- Erodes thick cortex extrinsically

- ST mass of intermed T1
 SI
- Erodes thick cortex extrinsically

- Fluid sensitive sequence better shows the ST mass
- *Important to note high water content of ST mass reflects cartilage component
 - Biopsy of ST mass may lead to mis-dx of a *chondrosarcoma*
 - Substantial tx implications (no chemotx for chondrosarc, but would for osarc)
 - (Murphey Rad 2004)

• Enhancing ST mass

- Axial fluid sensitive images show well-defined ST mass of approximately 75% cortical circumference
- Rays of low SI = periosteal rxn
- Small foci in marrow of high SI are not continuous with ST mass (reactive marrow)

- Bone scan
- Marked, eccentric radionuclide uptake
- No other lesions, good px

Other lesions that involve the cortex....

- Osteiod osteoma
- LCH
- FCD/NOF
- Infn

Case from CVI, 2/18/2011 UCSD Teleradiology

Ddx of Cortical Lesions

- Osteiod osteoma
- LCH
- FCD/NOF
- Infn

Courtesy, George Nomikos

Ddx of Cortical Lesions

- Osteiod osteoma
- LCH
- FCD/NOF
- Infn

Ddx of Cortical Lesions

- Osteiod osteoma
- LCH
- FCD/NOF
- Infn

Osteoid Osteoma: look closely for the **nidus**

- Benign
- Nidus consists of bone in various stages of maturity
- Has highly vascular stroma of connective tissue w/ many dilated capillaries

Case from CVI, 2/18/2011 UCSD Teleradiology

Osteoid Osteoma: nidus

- Osteoid w/in nidus will calcify
 - Associated with irregular trabeculae of woven bone
- Nidus is surrounded by compact lamellar bone made by the periosteum

Case from CVI, 2/18/2011 UCSD Teleradiology

Evidence of the Subperiosteal Origin of Osteoid Osteomas in Tubular Bones: Analysis by CT and MR Imaging

Francoise Kayser¹ Donald Resnick¹ Parviz Haghighi¹ Elke Do Rosario Husch Pereira¹ Guerdon Greenway² Mark Schweitzer³ Philippe Kindynis⁴

- Reviewed 38 pathproven cases of OO
 - Femur (13), tibia (15),
 humerus (4)
 - Determined location of nidus center of OO
 - Subperiosteal (18),
 Intracortical (18),
 endosteal (0),
 intramedullary (2)

Courtesy, George Nomikos

Kayser F. AJR:170, March 1998

Evidence of the Subperiosteal Origin of Osteoid Osteomas in Tubular Bones: Analysis by CT and MR Imaging

- Proposed that osteoid osteoma arises in a surface location (subperiosteal)
- Inward migration of the nidus (intracortical, endosteal, intramedullary)

Kayser F. AJR:170, March 1998

Evidence of the Subperiosteal Origin of Osteoid Osteomas in Tubular Bones: Analysis by CT and MR Imaging

- Continuous remodeling of bone with subperiosteal deposition, endosteal erosion, & cortical drift
- Cortical drift phenomena of immature bone
 - Bone develops in response to mechanical load, to fracture healing, etc.

Case from CVI, 2/18/2011 UCSD Teleradiology

Osteoid Osteoma: extensive marrow edema

- CVI case was an arthrogram
- Wider FOV coronal fluid sensitive seq showed marrow edema
- Patient brought back for CT with suspicion of OO

Case from CVI, 2/14/2011 UCSD Teleradiology

- Osteoid osteoma
- Chondroblastoma
- Osteoblastoma
- LCH
- Brodies abscess

Case from CVI, 2/14/2011 UCSD Teleradiology

- Osteoid osteoma
- Chondroblastoma
- Osteoblastoma
- LCH
- Brodies abscess

UCSD, Courtesy Evelyn Fliszar

- Osteoid osteoma
- Chondroblastoma
- Osteoblastoma
- LCH
- Brodies abscess

- Osteoid osteoma
- Chondroblastoma
- Osteoblastoma
- LCH
- Brodies abscess

- Osteoid osteoma
- Chondroblastoma
- Osteoblastoma
- LCH
- Brodies abscess

Primary Bone Malignancy

CHONDROSARCOMA

Primary Chondrosarcoma -Epidemiology

- 3rd most common primary bone malignancy
 - follows MM & osarc
- 8-17% of all biopsied primary bone tumors
 - Vs. 15% of biopsied
 primary bone tumors are
 osteosarcoma
 - (AFIP notes)

Chondrosarcoma

- Malignancy of cartilage cells, often w/ myxoid changes
- "Rings & arcs"
- Deep endosteal scalloping
- Cortical break-through, ST mass
- Pathologic fracture common

Specimen XR; Courtesy, George Nomikos

Chondrosarcoma

- Hallmark of dx:
 - Entrapment & destruction of osseous trabeculae (T) by cartilage lobules (C)
 - "Islands of normal bone within the neoplasm"
- Higher the grade, more cellular the tumor = less chondroid matrix

Chondrosarcoma Types

- Primary
- (central or surface)
 - Conventional intramedullary*
 - Clear cell
 - Juxtacortical
 - Myxoid
 - Mesenchymal
 - Extraskeletal
 - Dedifferentiated*
- Secondary
 - Enchondroma*
 - Osteochondroma*
 - Paget dis
 - XRT-induced

- Grade 1 low
 - Clear cell (*high glycogen)
- Grade 2 intermediate
- Grade 3 high

- Grade 1 low
- Grade 2 intermediate
 Myxoid
- Grade 3 high

- Grade 1 low
- Grade 2 intermediate
- Grade 3 high
 - Dedifferentiated
 ("collision tumor" of low grade chondrosarc & high grade fibrosarc)

- Grade 1 low
- Grade 2 intermedi
- Grade 3 high
 - Dedifferentiated
 ("collision tumor" or grade chondrosarc & high grade fibrosarc)

Biopsy & risk of underestimating lesion grade

- Acquire & carefully review images
- Direct biopsy toward aggressive endosteal scalloping, ST component, & diffusely enhancing regions
- Avoid areas of matrix mineralization
- Biopsy tract resected w/ surgical excision

Grade 1 conventional chondrosarcoma vs. enchondroma of long bone

- Look for signs of higher grade chondrosarc:
 - Cortical destruction

– ST mass

- If sx-ic intramedullary cartilage tumor of long bone with endosteal scalloping of < 2/3 cortical thickness . . .
 - Follow 4-6 mo intervals x2 yrs
 - Then annually up to 5 yrs

Chondrosarcoma Imaging: XR

- Mixed lytic and sclerotic
 - Sclerotic = chondroid matrix = rings & arcs, or flocculent calcs
 - Lucent = geographic lysis, multilobulated, corresponds to lobular growth of hyaline cart
- Higher grade = more motheaten, permeative
 - (mesenchymal, myxoid, & dedifferentiated types)
 - Clear cell can appear radiolucent
- Lobulated endosteal scalloping

 → cortical breakthrough → ST
 mass

Courtesy, George Nomikos

Chondrosarcoma Imaging: Scintigraphy

- Marked increased radionuclide uptake >> anterior iliac crest
- Heterogenous pattern if conventional intramedullary chondrosarc

Courtesy, George Nomikos

Chondrosarcoma Imaging: CT

- Deep endosteal scalloping (>2/3 cortical thickness)
- Cortical remodeling, thickening & periosteal rxn, common
- ST component

Courtesy, George Nomikos

Chondrosarcoma Imaging: CT

- Best for detection of matrix mineralization
 - Matrix mineralization not helpful in distinguishing chondrosarc f/ enchondroma
 - Less calcification seen with higher grade
- Mild periph rim & septal enhancement
 - Higher grade lesions more diffuse & nodular enh d/t increased cellularity & decr'd water content

Courtesy George Nomikos

Chondrosarcoma Imaging: MR

- Best for extent of marrow involvement
- Matrix mineralization: low to intermediate on T1
 - Speckled high T1 = entrapped yellow marrow
- Non-mineralized compts are high on T2
 - High water content of hyaline cart
 - Peritumoral edema
- Cart lobules may be surrounded by low SI septa
- PD: best to depict endosteal scalloping

Courtesy George Nomikos

Chondrosarcoma - Treatment

- Low grade:
 - Intralesional curettage, chemical/thermal ablation , cement or bone graft
- Intermediate/high grade:
 - Wide surgical excision
- Chemotx and XRT have limited role
 - Conventional chondrosarc not particularly sensitive
 - XRT for higher-grade conventional chondrosarc (gr 2-3) t/ is incompletely excised
 - More aggressive chondrosarc (mesenchymal, dedifferentiated) use both
 - Clear cell chondrosarc use chemotx

Chondrosarc – Metastatic disease

- Low grade:
 - Relatively non-existent
- Intermediate grade:
 - Lungs
 - Lymph nodes
 - Bones
- High grade:
 - Above + viscera (liver)

Chondrosarcoma – Conventional Intramedullary

- Most common primary chondrosarcoma
- 4th-5th decades of life
- Pain & ST mass
- 5 yr survival:
 - Gr1: 90-94%
 - Gr2: 61-81%
 - Gr3: 43-44%
- Long bones & pelvis (65%)
 Femur > tibia > humerus

Intramedullary chondrosarcoma

- Lobular growth
- Multilobulated lesion replacing the marrow space (C)
- Deep endosteal scalloping (>2/3 cortical thickness) with expansile remodeling of bone (arrows)
 - Reflects slow tumor growth

Intramedullary chondrosarcoma: Sites of involvement

- Large at dx (>4cm length)
- Long tubular bones
 - Metaphysis > diaphysis> Epiphysis
 - Epiphyseal enchondroma is exceedingly rare
 - Proximal femur > tibia > fibula

Intramedullary chondrosarcoma: T1

- Signal of the ST mass follows that of high water content of hyaline cartilage
 - (sim to periosteal osarc, w/o the perpendicular periosteal rxn)

Intramedullary chondrosarcoma: T1 & T2

Intramedullary chondrosarcoma: post Gad & gross

- 10% of chondrosarc
- Consists of conventional low-grade chondrosarcoma with foci of higher-grade noncartilaginous malignancy
 - such as MFH,
 osteosarcoma, or
 fibrosarcoma
- "Collision of two tumors"

Clear Cell Chondrosarcoma

- Rare, low grade malignant cartilaginous tumor
 - (Glycogen-heavy chondrocytes that appear clear/vacuolated)
- Epiphyseal/apophyseal
- May histologically resemble **osteoblastoma**
 - Large areas of hemorrhage and cyst formation, unlike conventional chondrosarcoma
- About ½ of clear cell chondrosarc contain areas of conventional chondrosarcoma

Clear cell chondrosarcoma in the left proximal femur of a 30-yearold man with hip pain

Secondary Chondrosarcomas

 When enchondromas and osteochondromas go bad

Enchondroma

- Geographic
- Narrow zone of transition
- Chondroid matrix (except hand, may not see matrix)
- Complications:
 - Fracture
 - Malignant transformation to chondrosarcoma
- Multiple:
 - Maffucci (w/ ST hemangiomas) & Olliers
 - Increased risk of malignant transformation

Courtesy, George Nomikos

Enchondroma

Courtesy, George Nomikos

Chondrosarcoma features when ddx incl enchondroma:

- Deep endosc scalloping (>2/3 cortical depth)
- Uptake on bone scan > ASIS
- Cortical destruction or ST mass
- Periostitis, cortical thickening
- Size > 5cm
- Epiphyseal location (unlikely for enchondroma)
- Pain directly attributable to lesion

Enchondroma Gone Bad

- Brady's case
- 59 yo male with palpable, painful 4th digit mass

Courtesy, Brady Huang
Secondary Chondrosarcoma from Enchondroma

- 1st clinically sx-ic
- 2nd imaging
 - Expansile
 - Marrow replacing, endosteal thinning
 - Enhancement

Courtesy, Brady Huang

Secondary Chondrosarcoma from Enchondroma

T1

T2 FS

T1 FS +

Courtesy, Brady Huang

Enchondroma Gone Bad

Courtesy, Brady Huang

Osteochondroma

- Most common benign bone neoplasm
- 10-15% of all primary bone tumors
- Malig transformation:
 - 1% for solitary osteochondromas
 - 2-5% for hereditary multiple exostoses (HME)

Rady Children's Hospital

Osteochondroma: Cartilage cap

Rady Children's Hospital

Osteochondroma: Malignant Transformation

- Growing osteochondroma in a skeletally mature patient
- Irregular or indistinct lesion surface
- Focal radiolucent regions w/in the lesion
- Erosion or destruction of adj bone
- Significant ST mass w/ scattered calc'n
- Hyaline cart cap thickness > 1.5cm sk mature suspicious for harboring malignant transformation
- Bone scan does not help differentiate benign f/ malignant

Osteochondroma Gone Bad - MHE

Osteochondroma Gone Bad - MHE

Improved Differentiation of Benign Osteochodnromas from Secondary Chondrosarcomas with Standardized Measurement of Cartilage Cap at CT and MR Imaging. Bernard SA, et al. Radiology 2010; 255,857-865.

- Murphey and colleagues set out to verify cartilage cap thickness and concern for malig
- Reviewed 67 benign enchondromas, 34 exostotic chondrosarcomas
- Greatest percentage of malignancy was in lesions derived from pelvis

Determining cartilage cap thickness

- Identify tidemark

 (arrows) of mature
 mineralization at the
 cartilage interface with
 the osteochondroma
 stalk
- Exclude crevases of cartilage b/t undulations in the tidemark (dotted line)

Bernard S A et al. Radiology 2010;255:857-865

Determining cartilage cap thickness

- Measure cartilage thickness perpendicular to the tidemark
- Include full thickness of relatively high-fluidcontent cartilage
 - Fluid attenuation on CT
 - Low-intermed T1
 - Intermed PD
 - High T2

Bernard S A et al. Radiology 2010;255:857-865

Murphey 2010 article results

- Cartilage cap thickness results:
 - Benign: 79%<1cm; 7%>1.5cm, 18%>1cm
 - Malignant: 2-14cm at CT, 2-17cm at MR; 0<2cm, 79%>3cm
- 2cm cutoff:
 - Sens/spec = 100%/98% MR (100%/95% CT)
 PPV/NPV = 96%/100% MR (93%/100% CT)
- If cap > 2cm at CT, confirm with MR or US to exclude bursal fluid
- Consider close surveillance of central lesions, esp pelvic osteochondromas

Correlation of cartilage cap thickness and pathologic findings.

- Abrupt transition b/t malig (green) & benign (red) at 2cm
- Arrow = 1
 exception,
 benign lesion
 of 2.2cm

Bernard S A et al. Radiology 2010;255:857-865

In conclusion . . .

- Reviewed imaging criteria
- Discussed imaging modalities and role in staging
- Discussed some of the most common primary malignancies and their importance in deriving useful ddx.

Washington Monument - National Cherry Blossom Festival 2010 Photo by Brent Shepherd

Thank you!

• Special thanks to George Nomikos and his excellent teaching file which he hoped I would share with all of you.

Tidal Basin, Jefferson Memorial - National Cherry Blossom Festival 2007 Photo by Brent Shepherd

References (in order of appearance)

- Stacy GS, Mahal RS, Peabody TD. Staging of Bone Tumors: A Review with Illustrative Examples. AJR 2006; 186:967-976.
- Davies A, Skinner JA, Saifuddin A. Surgical Staging 1: Primary Tumour. Imaging of Bone Tumors and Tumor-Like Lesions. 2009; 163-181.
- Huang AJ, Willis MH, Kattapuram SV, Bredella MA. Surgical Staging 2: Metastatic Disease. Imaging of Bone Tumors and Tumor-Like Lesions: Techniques and Applications. 2009; 183-98.
- Daldrup-Link, et al. Whole Body MRI for Detection of Bone Metastases in Children and Young Adults: Comparison with Skeletal Scintigraphy and FDG PET. AJR 2001; 177:229-336.
- Kayser F, et al. Evidence of the Subperiosteal Origin of Osteoid Osteomas in Tubular Bones: Analysis by CT and MR Imaging. AJR 1998;170:609-614.
- Murphey MD. AFIP Course Notes 1997.
- Murphey MD, et al. From the Archives of the AFIP. The Many Faces of Osteosarcoma. RG 1997;17:1205-1231.
- http://seer.cancer.gov/publications/aya/8_bone.pdf
- Murphey MD, et al. Telangiectatic Osteosarcoma: Radiologic-Pathologic Comparison. Rad 2003; 229:545-553.
- Jelinek JS, et al. Parosteal Osteosarcoma: Value of MR Imaging and CT in the Prediction of Histologic Grade. Rad 1996; 201:837-842.
- Murphey MD, et al. Imaging of Periosteal Osteosarcoma: Radiologic-Pathologic Comparison. Rad 2004; 233:129-138.
- Murphey MD, et al. From the Archives of the AFIP. Imaging of Primary Chondrosarcoma: Radiologic-Pathologic Correlation. RG 2003; 23:1245-1278.