Lower extremity - Ankle and foot

Department of Radiology UCSD

Foot and Ankle

- Anatomy

- Pathology

OBJECTIVES

Review the osseous anatomy, major normal variants, and clinically important contours of the calcaneus and talus

Review traumatic pathology of the calcaneus and talus with an emphasis on pathomechanics and accurate description

Sonography-Embryonic hindfoot

Anatomy- Calcaneal articular surfaces

Anatomy-Lateral Contours Calcaneus

Saute et al. Radiology 242(2):509-517 Feb. 2007

Medial Surface Calcaneus

Normal anatomy- Talus

Radiographs

Normal Variation

Calcaneal apophysis- fuses at age 12-15 in both sexes

Transient Calcaneal Spur

Disappears by age 1!

Normal Variant- Pseudocyst

Prominent Vascular Remnant

AJR:185, December 2005

Os Supratalare- ?Normal Variant

Trauma

Calcaneus Fractures

- Most common tarsal fracture
- Accounts for 2% of all fractures
- 70-75% Intraarticular
- 20-25% Extrarticular
- Historically poor prognosis
- No consensus on management due to lack of standard, unified classification system and understanding of fracture pathoanatomy
- High variability in fracture pattern based on magnitude and direction of impacting force, foot position, muscle tone, and bone mineralization

Intraarticular Fx-Pathomechanics

Shear

Tongue Comp.

- Axial loading mechanism results in typical pattern of the primary shear (sagittal) and secondary compression (coronal) type fracture lines
- Sagittal fracture (parallel to long axis of the calcaneus) - occurs due to wedge force of the talus on calcaneus
- If energy of impact is not expended completely, compression or secondary fracture lines may occur and may result in a "tongue" type or "joint depression" type fracture

Pathoanatomy

Diverging axis of the calcaneus and talus results in shear separation of the sustenatacular and tuberosity portions Hindfoot varus- medial fx line Hindfoot valgus-lateral fx line

Calcaneus Fracture- Shear Force

Shear-Typical Split

Shear- Unusual Double Split

Calcaneus Fractures

Marked rotation of mobile posterolateral tuberosity fragment resulting in marked widening of the calcaneuss

Calcaneus Fractures- Compression

Tongue Type Fracture

Intraarticular depressed

CT Appearance

Tongue type

Intraarticular Depressed

Classification

Schmidt-Weiner Classification of Calcaneal Fractures and Their Prevalence

Туре	Description	Prevalence (%)
1 A •†	Fracture of calcaneal apophysis	6
1B*	Sustentaculum tali fracture (intraarticular)	3
1C'	Anterior process fracture (intraarticular)	15
1 D'	Inferolateral fracture (intraarticular)	1
1E*	Avulsion fracture	
2A [‡] 2B [‡]	Beak fracture Achilles tendon avulsion	4
3§	Linear extraarticular fracture	19
4\$	Linear intraarticular fracture	10-25
5A§	Tongue-type fracture	5
5B§	Joint depression or comminuted fracture	40-60
6	Posterior calcaneal fracture including tuberosity and Achilles tendon with extensive soft-tissue damage	<1

Source.—Reference 11.

* Caused by avulsion or twisting injury and usually has a benign course.

[†] Occurs in children.

* Caused by direct trauma.

[§] Usually occurs following a fall from heights.

^I Usually seen in victims of lawn-mower accidents, especially children.

Classification

Modified Essex-Loprestie Classification of Calcaneal Fractures

> Extraarticular fractures Calcaneal tuberosity fractures Beak type Vertical Horizontal Medial avulsion Intraarticular fractures Subtalar joint involvement Undisplaced Displaced Comminuted Calcaneocuboid joint involvement

SANDERS CLASSIFICATION (CT)

TYPE IIA

III AB

TYPE IIB

TYPE IIC

III BÇ

III AC

Sanders Classification

- Most useful system for intraarticular fracture classification
- Improved interobserver variability
- Has both clinical and prognostic implications
- Type 1: Excellent results with conservative management
- Type 2 and 3: Excellent results with surgical management
- Type 4: Poor results with surgical managment

Intraarticular Fractures: Typical Osseous Features

- Loss of Height due to impaction and/or rotation of the more mobile tuberosity fragment
- Widening due to displacement of tuberosity fragment
- Posterior subtalar joint disruption
- Axial loading associated with TL burst fractures
- Superior peroneal retinacular avulsions

Intraarticular Calcaneus Fractures-Extraosseous Associations

Peroneal tendon entrapment

Entrapment Complication

Fibrosing tenosynovitis related to untreated peroneal tendon entrapment

Associated injury- SPR Avulsion

Intraarticular calcaneus fractures-Extraosseous Findings

MR Imaging

MR Imaging

Diagnosis: Calcific Myonecrosis related to a remote compartment syndrome

Calcific myonecrosis

- Relatively rare, late sequela of trauma
- Plate/Sheet-like calcifications are characteristic
- Only 1 case reported in the foot in the English literature
- May erode adjacent bone
- Spontaneous draining sinus-tracts and culture positive infections may develop
- Appropriate treatment: compartmental excision or debridement
Miscellaneous Calcaneus fx

Isolated sustentacular fracture

Axial loading with extreme hindfoot varus or inversion

May be intra or extra articular depending on if the fracture line involves the calcaneal facet

Conservative treatment

Miscellaneos fx

Isolated medial tubercle fx- axial load In extreme hindfoot valgus

Extraarticular, conserative treatment

Miscellaneous- Anterior Process Calcaneus Fracture

- Type 1: Forced plantar flexion and inversion resulting in Bifurcate ligament injury and avulsion. Clinically mimics ankle sprain
- Type 2: Eversion and dorsiflexion with shear injury to anterior process
- Both susceptible to nonunion/AVN with recurrent pain
- Early detection can prompt surgical management- displaced fractures involving more than 25% of the calaneocuboid are treated surgically

Beak Fracture

Treated surgically

Greater displacement = greater functional loss of the the Achilles tendon

Stress fracture

How can we make the report sound sweet and help with management?

Intraarticular/extrarticular?

- Think about the mechanism and why the fracture appears the way it does
- Describe the displacement and comminution of the various named fragments (tuberosity, sustenacular, middle)
- Describe the position of the IA fracture line with respect to the posterior calcaneal facet (Sanders)
- Bohler's and Gissane's angle
- Soft tissue entrapment

Talus Fractures

- Fractures divided into head, neck and body fractures
- Approximately 50 % of talar fractures involve the neck
- Most common body fractures are osteochondral, less common involve the lateral or posterior process

Talar Neck Fractures

Hawkins Classification

of Talar Neck Fractures

	Radiographic findings	Risk of AVN
Type I	Nondisplaced fracture line	0-13%
Type II	Displaced fracture, plus subluxation or dislocation of subtalar joint	20-50%
Type III	Displaced fracture, dislocation subtalar AND tibiotalar joints	69-100%
Type IV	Displaced fracture and disruption of talonavicular joint	high

Talar Neck Fractures(Aviator's Astragalus)

Most common mechanism: Dorsally directed force on a braced foot (MVA) Complication - Since most of the blood supply to the talar body comes via the talar neck, fractures of the neck place the patient at risk for AVN

Hawkins Type III

Talar Neck Fractures

Hawkins Type II

Talar Neck Fractures

Hawkins Type I

Postoperative Talar Neck-Complication

Complication- AVN

Peree et al. Radiographics 25: 399-410. 2005

Lateral Process of the Talus-Radiography

Lateral Process Talus Fracture

PURE DORSIFLEXION, INVERSION AND AXIAL LOADING

11/0

CEDELL FRACTURE

Osteochondral Fractures

Inversion Injuries

Radiographs

- 1 Normal
- 2 Semicircular lucent line

Subcortical 2a round lucency(cysts)

3 Same as 2

4 Loose body

MRI T2WI *

Diffuse high-signal intensity

Semicircular low-signal line

High-signal fluid within fragment

High-signal fluid surrounds fragment

Defect talar dome, possibly loose body

Arthroscopy

Normal, or softening of cartilage

Break in cartilage, fragment not displacement

None

Displaceable fragment

Defect plus loose body

35 yo s/p MCA

Conclusion

Osseous anatomy of the talus and calcaneus can seem complex
Using a systematic approach

Distal fibular fracture

INIM R

Weber A

Bimalleolar fracture

Weber Classification

- Determine level of fracture with respect to the syndesmosis.
- Correlates with prognosis and treatment.
- Type A= transverse fracture of lateral malleolus below syndesmosis.
- Type B= oblique fracture at the level of the ankle joint; partial disruption of syndesmosis.
- Type C= fibular fracture proximal to the ankle joint with tear of tibiofibular ligaments and syndesmosis.

Stress fracture foot

Stress fracture medial malleolus

fracture 5th proximal phalanx renal osteodystrophy

fracture sesamoid

Avulsion tib.post. tendon

Tibialis anterior tendon tear

Tear of the anterior Syndesmosis ligament

Achilles tendon tear

Tear ant. talofibular lig

Fracture of the calcaneus and talus

Osteochondritis dissecans

Repeated microtrauma causes injury

- Occurs in typical locations at the knee and ankle.
- In the ankle the talar dome is typical location.

and stress fracture in 50 yo patient with chemotherapy for lymphoma

Fs T1-w Gd

Inflammation

Osteomyelitis / Arthritis foot

Osteomyelitis ankle

Tuberculous dactilitis

- frequent in children
- multiple foci in 25-30%
- Soft tissue swelling
- Periostitis
- May be cystic = spina ventosa

Rheumatoid arthritis

Reactive arthritis - Reiter's © UC Regents Syndrome © UC Regents Syndrome

Τ1

Tifs-Cc

Tumor

Plantar fibromatosis

Metastatic Prostate Cancer

Chondrosarcoma

Various

Calcaneonavicular coalition

- Fusion of tarsal bones
- Talocalcaneal and calcaneonavicular are most common types
- Fibrous, cartilaginous or osseous.
- Result in limited motion at these joints and over time pain, arthritis, tendonopathy develop.

Club foot

Clubfoot

1 in 1000 births.
Unclear etiology.
Hindfoot equinus, hindfoot varus, and forefoot varus.

Bone marrow edema

Necrosis/bone bruise of the navicular bone?

Follow-up 6 months

later

Fs T2-w

Transient migratory osteoporosis

Summary and Discussion

I. Anatomy

II. Pathologies

III. What pathologies are important at your level?