Adult Flatfoot Deformity: Preoperative Imaging and Postoperative Assessment with Focus on Complications

Michael Davis
Objectives

• Review the anatomy and pathophysiology of adult flatfoot deformity and the relevant preoperative imaging findings
• Review the basics of procedure selection and typical postoperative imaging appearances
• Discuss important postoperative complications
Anatomy

• Bones of the foot form **longitudinal** and **transverse** arches relative to the ground which distribute and absorb forces during standing and locomotion.
Anatomy

- **Medial column**: Talus, navicular, cuneiforms and first three rays
- **Lateral column**: Calcaneus, cuboid and lateral 2 rays
- Lateral column intrinsically stable
- Medial column has an adaptive function during weight-bearing
 - Abnormal repetitive loading on the medial column leads to dysfunction of the dynamic and static stabilizers
Anatomy

- Medial column - Talus, navicular, cuneiforms and first three rays
- **Lateral column** - Calcaneus, cuboid and lateral 2 rays
- Lateral column intrinsically stable
- Medial column has an adaptive function during weight-bearing
- Abnormal repetitive loading on the medial column leads to dysfunction of the dynamic and static stabilizers

http://uwmsk.org/footalignment
Anatomy

- **Dynamic stabilizers**: short muscles of the foot, PTT, FHL, PL
- **Static Stabilizers**: Spring ligament, deltoid ligament, long plantar ligament and plantar fascia
Anatomy

- Dynamic stabilizers - short muscles of the foot, PTT, FHL, PL
- Static Stabilizers - Spring ligament, deltoid ligament, long plantar ligament and plantar fascia
Adult Acquired Flatfoot

- Progressive abnormality characterized by collapse of the medial longitudinal arch and development of hindfoot valgus
- Caused by mechanical uncoupling of the bones of the tarsus due to failure of the dynamic and static stabilizers of the medial longitudinal arch
Causes of Adult Flatfoot

- **Posterior tibial tendon dysfunction**
- Degeneration
- Tenosynovitis
- Tears
 - Ligamentous injury
 - Deltoid ligament
 - Spring ligament
 - Lisfranc ligament
 - Plantar fascia rupture
 - Arthritis in hindfoot/midfoot
 - Degenerative
 - Inflammatory
 - Neuropathic arthropathy
 - Malunited fracture
 - Calcaneal fracture
 - Fibular fracture with shortening and syndesmotic injury
 - Hypermobility leading to plastic deformation/elongation of medial tendon, ligament, and capsular supports
 - Tight triceps surae or isolated gastrocnemius tightness
 - Spastic flatfoot
 - Neuromuscular imbalance
 - Polio
 - Cerebral palsy
 - Closed head injury
 - Stroke
Posterior Tibial Tendon

- **Key dynamic** stabilizer of the medial longitudinal arch
- **Inverts** the hindfoot and midfoot
- Assists in **plantar flexion** of the foot and ankle
- **Adducts** the transverse tarsal joint
- **Stabilizes** the hindfoot and midfoot during the toe-off stage of gait by locking the calcaneocuboid and talonavicular joints
PTT Dysfunction

- Most commonly due to degenerative tendinopathy at the submalleolar (watershed) level
- Less common due to inflammatory arthropathy
- Insertional tendinopathy (may be associated with type II accessory navicular) less common than noninsertional
- If PTTD is not treated, there is progressive failure of the static stabilizers of the medial longitudinal arch.
PTT Dysfunction

- Most commonly due to degenerative tendinopathy at the submalleolar (watershed) level
- Less common due to inflammatory arthropathy
- Insertional tendinopathy (may be associated with type II accessory navicular) less common than noninsertional
- If PTTD is not treated, there is progressive failure of the static stabilizers of the medial longitudinal arch.
*Most patients who had an accessory navicular showed a direct insertion of the posterior tibial tendon into the accessory navicular, with absence of the multiple insertions into the midfoot seen in normal specimens.
The structure and histopathology of the "enthesis organ" at the navicular insertion of the tendon of tibialis posterior.

Bernhard Moriggl, Tsukasa Kumai, Stefan Milz and Michael Benjamin
Two entry vessels supply the PTT, entering approx 4.5cm proximal and 2cm distal to the malleolus

A hypovascular, retromalleolar region was observed in 100% of specimens microscopically

Concomitant hypovascular and mechanical traction in the retromalleolar tendon may render the PTT susceptible to injury
What Other Structures Are Important?

Pertinent anatomy of the acquired flatfoot involves more than simply failure of the PTT.

- Talonavicular joint (TNJ)
- Calcaneonavicular (spring) ligament
- Deltoid complex
- Plantar Fascia

should all be taken into consideration when evaluating the flatfoot

Walters and Mendicino Flexible adult flatfoot anatomy and pathomechanics
Talonavicular joint

- **Keystone** to motion of the hindfoot and key joint to the triple complex of the hindfoot

- Static ligamentous support and dynamic support from the PTT are critical in allowing normal talar head motion and function of the talonavicular joint

- The talonavicular joint is the **primary site of deformity** in AAF
Spring Ligament

- Superomedial CNL is the broadest and most important part of the complex
- Interplays with the deltoid ligament in stabilization of the medial ankle joint
- **Supplements** the dynamic support of the PTT in preventing plantar and medial migration of the talar head
- “acetabulum of the talus”
Deltoid Ligament

– Serves as a primary medial ankle stabilizer and prevents valgus tilting of the talus

– Failure of the deltoid ligament allows the talus to tilt into the valgus within the ankle mortise (criteria for stage IV PTTD)
Plantar Fascia

- The primary structure resisting deformity of the arch of the foot
- Lapidus described the foot as a truss
 - Proximal strut is the talus and calcaneus
 - Distal strut is the first ray
 - Tie rod is the plantar aponeurosis
Attenuation of the PTT leads to destabilization of the midtarsal joint, leading with plantarflexion and adduction of the talus.
Talar migration is coupled with eversion of the calcaneus through retrograde pronation of the subtalar joint.
The talus is no longer supported by the anterior and middle facets of the calcaneus and plantarflexes further.
As the **medial longitudinal arch flattens and elongates**, the lateral longitudinal arch cannot elongate by nature of its anatomic and ligamentous attachments.
The entire forefoot abducts with lengthening of the medial column and relative shortening of the lateral column. Navicular subluxes laterally with respect to the talus (talonavicular uncoverage/lateral peritalar subluxation). As the medial longitudinal arch flattens and elongates, the lateral longitudinal arch cannot elongate by nature of its anatomic and ligamentous attachments.
Radiographic Assessment
Radiographic Assessment
Radiographic Assessment

- Adult flatfoot is a complex 3 dimensional problem
- Each radiographic measurement is a two dimensional representation
- 3 basic components
 1. Longitudinal Arch Collapse
 2. Hindfoot Valgus
 3. Forefoot Abduction
Radiographic Assessment

• Adult flatfoot is a complex 3 dimensional problem
• Each radiographic measurement is a two dimensional representation
• 3 basic components
 1. Longitudinal Arch Collapse
 2. Hindfoot Valgus
 3. Forefoot Abduction
Longitudinal Arch Collapse

CALCANEAL PITCH ANGLE
- Formed by horizontal line from the base of the heel to inferior cortex of the calcaneus and a line from the base of the heel to the plantar aspect of the fifth metatarsal head
- 18-20 degrees considered normal
Longitudinal Arch Collapse

CALCANEAL PITCH ANGLE

-Formed by horizontal line from the base of the heel to inferior cortex of the calcaneus and a line from the base of the heel to the plantar aspect of the fifth metatarsal head

-18-20 degrees considered normal
Collapse of the Longitudinal Arch

LATERAL TALAR-1ST METATARSAL (MEARY) ANGLE
- Formed by the long axis of the talus and the first metatarsal on a weight-bearing view.
- Angle greater than 4 degrees convex downward is abnormal
- 15-30 degrees moderate, greater than 30 degrees severe
Collapse of the Longitudinal Arch

LATERAL TALAR-1ST METATARSAL (MEARY) ANGLE
- Formed by the long axis of the talus and the first metatarsal on a weight-bearing view.
- Angle greater than 4 degrees convex downward is abnormal
- 15-30 degrees moderate, greater than 30 degrees severe
Forefoot Abduction

TALONAVICULAR COVERAGE ANGLE
- Line connecting the edges of the articular surface of the talus
- Line connecting the edges of the articular surface of the navicular
- Angle of greater than 7 degrees is abnormal
Forefoot Abduction

TALONAVICULAR COVERAGE ANGLE
-Line connecting the edges of the articular surface of the talus
-Line connecting the edges of the articular surface of the navicular
-Angle of greater than 7 degrees is abnormal

27°
Forefoot Abduction

FIRST METATARSAL ANGLE
A line drawn through the mid-axis of the talus should be in line with the first metatarsal shaft, if it is angled medial to the first metatarsal it indicates pes planus.
A line drawn through the mid-axis of the talus should be in line with the first metatarsal shaft, if it is angled medial to the first metatarsal it indicates pes planus.
Hindfoot Valgus

AP TALO-CALCANEAL ANGLE (KITE’S ANGLE)
- Intersection of a line bisecting the head and neck of the talus and a line parallel with the lateral surface of the calcaneus.
- Normal is 15-30 degrees. Angle greater than 30 degrees indicates hindfoot valgus.
Hindfoot Valgus

AP TALO-CALCANEAL ANGLE (KITE’S ANGLE)
- Intersection of a line bisecting the head and neck of the talus and a line parallel with the lateral surface of the calcaneus.
- Normal is 15-30 degrees. Angle greater than 30 degrees indicates hindfoot valgus.
MRI Assessment

✓ To confirm the clinical findings, assess equivocal cases, and exclude other related etiologies

✓ For preoperative evaluation when surgical intervention is contemplated

✓ To assess the extent of cartilage, tendon, and ligament involvement and lateral bony impingement
• MRI staging approach correlates the primary and secondary MRI features of PTT dysfunction with the clinical staging system widely described in the orthopedic literature.
<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No deformity</td>
</tr>
<tr>
<td>IIa</td>
<td>Moderate flexible deformity (minimal talonavicular abduction, <30% talonavicular uncoverage)</td>
</tr>
<tr>
<td>IIb</td>
<td>Severe flexible deformity with either abduction through TN joint (>30% talonavicular uncoverage) or subtalar impingement</td>
</tr>
<tr>
<td>III</td>
<td>Fixed deformity (involving the triple-joint complex)</td>
</tr>
<tr>
<td>IVa</td>
<td>Hindfoot valgus and flexible ankle valgus without significant ankle arthritis</td>
</tr>
<tr>
<td>IVb</td>
<td>Hindfoot valgus with rigid ankle valgus or flexible deformity with significant ankle arthritis</td>
</tr>
</tbody>
</table>
- **Primary finding** – PTT Tenosynovitis, tendinosis, partial or full-thickness tears

<table>
<thead>
<tr>
<th>PTT Injury Type</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Homogeneous tendon, slightly enlarged with 1-2 longitudinal splits</td>
</tr>
<tr>
<td>II</td>
<td>Heterogeneous, attenuated tendon with wider longitudinal splits</td>
</tr>
<tr>
<td>III</td>
<td>Complete or near-complete tear of the PTT with few or no remaining intact fibers</td>
</tr>
</tbody>
</table>
Secondary Findings

- Spring ligament failure
- Talonavicular malalignment
- Lateral Hindfoot Impingement
- Deltoid ligament failure
- Sinus Tarsi Syndrome
- Plantar fasciitis
- Osteoarthritis
 - Ankle
 - Subtalar Joint
PTT Dysfunction

- **Stage I**
 - ✔️ Insertional Tendinosis
 - ✔️ Tenosynovitis
 - Spring ligament intact
PTT Dysfunction

• **Stage II**
 - Type I/II tear with tendinosis/tenosynovitis
 - +/- Talonavicular uncoverage/hindfoot valgus
 - Spring ligament abnormality
PTT Dysfunction

- **Stage II**
 - ✔ Type I/II tear with tendinosis/tenosynovitis
 - ✔ +/- Talonavicular uncoverage/hindfoot valgus
 - ✔ Spring ligament abnormality
PTT Dysfunction

- **Stage III**
 - Type II/III tear with severe Tendinosis/tenosynovitis
 - Talar uncoverage
 - Hindfoot valgus
 - Spring ligament abnormality
 - Early talocalcaneal and/or calcaneofibular impingement
 - Subtalar joint OA
PTT Dysfunction

- Stage IV
 - Chronic superficial and deep deltoid sprain
 - Tibiotalar OA
 - Talocalcaneal and calcaneofibular impingement
Treatment

• Stage I:
 – Conservative trial
 – Surgery dictated by condition of PTT - Soft tissue repair/tendon transfer
 – Often combined with medializing calcaneal osteotomy to correct heel valgus and prevent graft failure

• Stage IIA:
 – Medializing calcaneal osteotomy, FDL transfer, and gastrocnemius recession are tx of choice
 – Possible medial column procedure such as cotton osteotomy for first ray stabilization
 – Subtalar athroereisis in children

Treatment

- **Stage IIB:**
 - Consider adding lateral column lengthening to correct talonavicular joint abduction and increase the foot arch
 - Evans type procedure or calcaneocuboid distraction arthrodesis
- **Stage III:**
 - Triple arthrodesis or subtalar arthrodesis
- **Stage IV:**

<table>
<thead>
<tr>
<th>Foot/ankle deformity</th>
<th>Non-Arthritic, Flexible ankle</th>
<th>Rigid or arthritic ankle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible Foot</td>
<td>Flatfoot reconstruction with deltoid reconstruction</td>
<td>Flatfoot reconstruction with ankle fusion or TAR</td>
</tr>
<tr>
<td>Rigid Foot</td>
<td>Triple arthrodesis with deltoid reconstruction</td>
<td>Triple arthrodesis with TAR or pantalar fusion</td>
</tr>
</tbody>
</table>

SOFT TISSUE RECONSTRUCTION

FDL Tendon Transfer
FDL Tendon Transfer
FDL Tendon Transfer
MEDIALIZING CALCANEAL OSTEOTOMY

• Rationale
 – Realign the hindfoot from heel valgus
 – Reduce antagonistic forces on relatively weak FDL tendon transfer
 – Medializes the pull of the Achilles tendon
 – Shifts body weight support from medial to lateral column
After Jastifer et al. Foot and Ankle Specialist 2015
Valgus

Inverter

After MCO

Subtalar axis

After Hartog Foot and Ankle Clinics 2001
Elevation of the subtalar joint and correction of hindfoot valgus through insertion of a prosthetic cylinder screw into the sinus tarsi

Adjunct procedure for young patients with mild variants of PTTD

Aids in correction of hindfoot deformity and protects the medial soft tissue reconstruction
SUBTALAR ARTHROEREISIS

Cook et al Journal of Foot and Ankle Surgery 2011
Persistent hindfoot valgus results in first ray elevation or forefoot varus, which can be flexible and correctable or rigid and fixed.

Goal is to correct forefoot varus and stabilize the medial column.
MEDIAL COLUMN STABILIZATION

• Procedures include:
 – Naviculocuneiform arthrodesis
 – Opening wedge medial Cuneiform osteotomy (Cotton)
 – First TMT arthrodesis (Lapidus)
• Often performed in conjunction with lateral procedures
MEDIAL COLUMN STABILIZATION

24°
LATERAL COLUMN LENGTHENING

- 3-Dimensional correction that adducts the foot at the talonavicular joint by lengthening the lateral column and derotates the hindfoot out of valgus
- Transfers the weightbearing load to the lateral column
- Calcaneocuboid distraction arthrodesis
- Lateral column lengthening through the distal calcaneus (Evans)
Abducted Forefoot

Lateral Column Lengthened to Correct abduction

Evans Osteotomy
GASTROCNEMIUS RECESSION/ACHILLES LENGTHENING

- A tight gastrocnemius or Achilles tendon can be responsible for causing or aggravating heel valgus
- Addressed with either gastrocnemius recession or percutaneous Achilles lengthening
TRIPLE ARTHRODESIS

- Historically, triple arthrodesis is the gold standard for surgical correction of rigid flatfoot deformity
 - Subtalar
 - Calcaneocuboid
 - Talonavicular
- Converts the hindfoot into one osseous unit
- Negates the need for medial and lateral muscular stability at the ankle
- Stage III disease
- In some cases it may be possible to preserve joints
TRIPLE ARTHRODESI S

- Historically, triple arthrodesis is the gold standard for surgical correction of rigid flatfoot deformity
 - Subtalar
 - Calcaneocuboid
 - Talonavicular
- Converts the hindfoot into one osseous unit
- Negates the need for medial and lateral muscular stability at the ankle
- Stage III disease
- In some cases it may be possible to preserve joints

Wilson et al Foot and Ankle Clinics 2007
COMPLICATIONS

• FDL Tendinosis/Failure
• Arthroereisis plug migration/Sinus Tarsi syndrome
• Osteotomy Nonunion
• Hardware failure
• Talar Dome Injury
• Lateral Column Overload
• Nerve Injury
Postoperative Tendinitis

Dimmick et al
Postoperative Tendinitis

Dimmick et al
Postoperative Tendinitis

Dimmick et al
ARTHROERESIS PLUG MIGRATION

Corpuz et al
ARTHROERESIS PLUG EXTRUSION

Dimmick et al
Talar Fracture Complicating Subtalar Arthroereisis

Corpuz et al
SINUS TARSI SYNDROME

Dimmick et al
NONUNION

Medializing calcaneal osteotomy
Dimmick et al

Lateral Column Lengthening Calcaneal Osteotomy
ADJACENT JOINT OSTEOARTHITIS

Dimmick et al
Lateral Column Overload

• Excessive varus alignment of the forefoot after lateral column lengthening can overload the lateral foot.

• Can be seen with CCDA, Evans procedure or triple arthrodesis.

Tien Foot and Ankle International 2005
NERVE INJURY

• Posterolateral Portal
 - Just lateral to the Achilles tendon and about one-half inch proximal to the distal tip of the lateral malleolus
 - Used during LCL
 - Sural nerve at risk
 • Neuropraxia
 • Neuroma formation
Thank You