

14 yo male s/p ankle fracture 4 weeks ago with increased pain

Metaphyseal ostenecrosis after fracture

- Unusual as bone usually has extensive collateral circulation
- Long bones have 3 sources:
 - Nutrient artery system
 - Metaphyseal-epiphyseal system
 - Periosteal system

Laroche, M. Intraosseous circulation from physiology to disease.

Bone Blood Supply

- Nutrient artery system
 - From major systemic arteries
 - In case of tibia, tibialis anterior, tibialis posterior, and fibularis artery
 - High pressure
 - Supplies inner 2/3

Bone Blood Supply

- Metaphyseal-epiphyseal system
 - Arteries that enter at the level of the growth plate
 - Extensive anastomosis between the metaphyseal and epiphyseal systems
 - Supplied by major branch vessels
 - Distal tibia
 - Metaphyseal tibialis anterior
 - Epiphyseal tibialis anterior, tibialis posterior, fibularis

Periosteal System

- Extensive network of vessels covering entire length
 - All sorts of supply
 - From adjacent muscles (musculoperiosteal)
 - From adjacent fascia (musculofascial)
 - From bone itself (cortical capillary anastomosis)
 - From dedicated vessels (intrinsic periosteal)
- Relatively low pressure
- Supplies about outer 1/3

Arterial Supply in Adults

- Direction of flow is centrifugal
 - INSIDE to OUTSIDE
 - Endosteum to periosteum
- Extensive collateralization, especially at epiphysis and metaphysis

What about in kids?

- Periosteal system dominates, so blood flow is centripetal
 - OUTSIDE to INSIDE
- Growth plates separates epiphyseal and metaphyseal circulation
 - Growth plate supplied by perichondrial artery
- Extensive metabolic activity

Woon, C. Bone Circulation. Retrieved from www.orthobullets.com

Fractures and Blood Flow

- After a fracture...
 - Initially:
 - Decrease in blood flow overall
 - Increased intraosseous pressure
 - Because nutrient system/metaphyseal system is disrupted
 - Periosteal system is favored
 - Later:
 - Increased blood flow (regional acceleration)
 - Peaks at 2 weeks, back to normal at 3-5 months

Putting it all together

- In pediatric patients:
 - Distal metaphysis is supplied by nutrient and metaphyseal arteries along with the periosteal system
 - Physis inhibits collateral flow from the epiphysis
 - Fracture may disrupt larger vessels and increases intraosseous pressure, decreasing flow overall
 - Periosteal disruption cuts off the main blood supply
 - Children have an overall increased metabolic demand
- If the hemorrhage extends subperiosteally, can end up with osteonecrosis

Natural progression...

3 months

18 months

References

- 1. Bhattacharjee, A, Singh, J, Mangham, D and Freeman, R. Osteonecrosis of the distal tibial metaphysis after Salter—Harris type-2 injury: a case report. Journal of Pediatric Orthopaedics B 2015, 24:366–369.
- 2. Laroche, M. Intraosseous circulation from physiology to disease. Joint Bone Spine. 2002 May. Vol 69(3); 262-269.
- 3. Simpson, A. The blood supply of the periosteum. J Anat. 1985 Jun; 140(Pt 4):697-704.
- 4. Wheeless, C. Osseous circulation. www.wheelessonline.com/ortho.
- 5. Woon, C. Bone Circulation. Retrieved from www.orthobullets.com/basic-science/9005/bone-circulation.