Musculoskeletal Manifestations in the Setting of Chronic Renal Failure

Yatin Chadha June 23, 2016

Outline

Chronic Renal Failure

- Renal osteodystrophy

Dialysis

- Amyloidosis
 - Spondyloarthropathy

Renal Transplantation

- Osteonecrosis
- CIPS
- Gout

Sorry eh!

Calcitriol

– Net effect : 🕇 Ca & P

PTH
− Net effect: ↑ Ca, ↓ P

CRD - Pathophysiology

Renal osteodystrophy/CKD-MBD

 Also referred to as chronic kidney disease – mineral bone disorder (CKD-MBD)

- Key player:
 - 2° Hyperparathyroidism (HPT)
 - Affects osteoblasts and osteoclasts

Renal osteodystrophy/CKD-MBD

Bone resorption in Renal Osteodystrophy

- Subperiosteal
- Cortical
- Endosteal
- Trabecular
- Subchondral
- Subphyseal
- Subligamentous & subtendinous

Subperiosteal Resorption

Case courtesy Edward Smitaman

Jalili P. Int Endodontic J. 2015

Trabecular resorption

Subchondral resorption

Edward Smitaman

Subchondral resorption

Case courtesy Edward Smitaman

Case courtesy Paul Fenton, Queen's U.

Subchondral and Subtendinous Resorption

Subtendinous resorption

Murphey et al. Radiographics. 1993(2)

Endosteal and Cortical Resorption

Bone resorption – summary

- Earliest sign in 1° and 2° HPT
- Subperiosteal resorption most common (pathognomonic for HPT), responds to therapy
- Sites:
 - Subperiosteal: Radial aspects 2nd/3rd middle phalanges (pathognomonic), phalangeal tufts, femur, tibia, humerus, ribs, lamina dura
 - Trabecular: skull (salt & pepper)
 - Subchondral: SI, AC, sternoclavicular, discovertebral, pubic symphysis, patella
 - Subligamentous/tendinous: femoral trochanters, ischial tuberosities, humeral tuberosities, conoid tubercle of clavicle, elbow, inferior calcaneus

Brown Tumors (aka osteitis fibrosa cystica)

Resorption/osteopenia

Fibrovascular tissue ingrowth

Microfractures, hemorrhage, multinuclear macrophages

Brown tumors - histopathology

- Fibrous stroma
- Multinucleated giant cells
- Hemorrhage/hemosid erin

Brown Tumors

- Occurs in 1° and 2° HPT, very uncommon
- Osseous resorption should co-exist
- Sites: Pelvic girdle, hands, extremities, ribs, clavicle, facial (can be multiple)
- Focal bone pain
- Imaging:
 - Well-defined, expansile
 - MRI: low T2 signal, hemosiderin, enhancement
- Responds to therapy (sclerosis)

Knowles et al. J Mag Res Imag. 2008 ;28 :759-761

Generalized osteopenia

- Osteomalacia (reduced osteoid mineralization)
 - Imaging:
 - Osteopenia
 - Poor trabecular/cortical distinction
 - Looser's zones (femoral neck, pubic rami, ilium, ribs, scapulae, acromion)
 - Rickets
- Osteoporosis
 - Aluminum may also have a role
 - BMD screening not routinely recommended in 2°HPT
 - Fractures \rightarrow vertebrae, distal forearm, femur

Osteomalacia

Lim CY. Clin Rad. 2013

Increased bone density - osteosclerosis

- Axial skeleton > appendicular skeleton
 - Spine (rugger jersey)
 - Pelvis, calvarium, clavicles
 - Metaphysis of long bones
- PTH action on osteoblasts
- Does not improve after dialysis

Osteosclerosis

Case courtesy Edward Smitaman

Case courtesy Paul Fenton, Queen's U.

Bone formation – periosteal neostosis

- Late sign
- Mature
 periosteal bone
 formation with
 cleft
- Hand & feet, long bones, pelvis

Soft tissue calcifications

- Periarticular
- Cartilaginous
- Arterial (pipestem, dorsalis pedis & radial)
- Visceral
- Ocular

Periarticular calcifications

- Resemble tumoral calcinosis
- Metabolic panel (GFR, Ca, P)
- Often large joints (hip, shoulder, elbow, wrist foot)
- Often symmetric
- Imaging:
 - Cloud-like
 - May be cystic with Ca+ sedimentation (more active)
 - No bony erosion
- Can improve following dialysis

Chondrocalcinosis

- Sites:
 - Knee
 - Wrist
 - Hip
 - Pubic symphysis
 - Shoulder
- More common in 1° than 2° HPT

Arthropathy of Hyperparathyroidism

- Mixed features:
 - Erosions
 - Relative preservation joint space
 - Periosteal whiskering
 - Subperiosteal resorption coexists

Resnick. Radiology. 1974;110: 263-269

Primary versus Secondary Hyperparathyroidism

Findings

Brown tumors Osteosclerosis Chrondrocalcinosis Periostitis Primary Hyperparathyroidism Common Rare Not infrequent Rare

Secondary Hyperparathyroidism* Less common

Common Rare Not infrequent

Resnick and Kransdorf, Bone and Joint Imaging 3rd edition. 2005

Dialysis-related Bone Disease

Aluminum toxicity

Main source is aluminum salts (bind phosphate)

• Aluminum in dialysate is now less of an issue

Aluminum toxicity

- Osseous
 - Osteomalacia
 - Fractures (ribs, vertebrae, pelvis, hips, sternum, clavicles)
 - Possible role in spondyloarthropathy, osteonecrosis
- Encephalopathy

Amyloidosis 2° hemodialysis

• B2-microglobulin (B2-M)

- Three main forms:
 - Peripheral (arthopathy)
 - Destructive spondyloarthropathy
 - Carpal tunnel syndrome

Case courtesy Edward Smitaman

Case courtesy Edward Smitaman

Amyloidosis – peripheral arthropathy

- Chronic hemodialysis (> 5 years)
- Sites: hip, wrist, shoulder (periarticular location)
- Osseous and soft tissue involvement (includes bursa)
- May result in pathologic fracture
- Imaging:
 - Joint space narrowing late feature
 - May show low T2 signal

- Chronic hemodialysis (> 4 years)
- B2-M deposition in disc and posterior elements
- Other predisposing factors?
 - Parathyroid mediated subchondral bone resorption
 - Aluminum

- Key findings:
 - Disc space narrowing
 - End plate erosions
 - Lack of osteophytes
 - Low T2 signal
 - No fluid collections

- Key findings:
 - Disc space narrowing
 - End plate erosions
 - Lack of osteophytes
 - Low T2 signal
 - No fluid collections

- Key findings:
 - Disc space narrowing
 - End plate erosions
 - Lack of osteophytes
 - Low T2 signal
 - No fluid collections

- Key findings:
 - Disc space narrowing
 - End plate erosions
 - Lack of osteophytes
 - Low T2 signal
 - No fluid collections

Theodorou et al. Seminars in Dialysis. 2002; 15(4)

Destructive Spondyloarthropathy – summary

- Sites: lower C-spine, craniocervical
- May be multilevel
- Often shows low T2 signal
- Rapidly progressive (months)
- Ddx
 - Early: ankylosing spondylitis
 - Advanced: infection, crystal

Amyloid – carpal tunnel

- > 50% of patients with 10+ years dialysis
- Most common surgical indication in chronic dialysis
- Median > ulnar nerve
- Imaging:
 - Cysts (lunate, scaphoid), joint space preserved
 - Volar involvement > dorsal

Kiss et al. AJR. 2005;105:1460-67

Dialysis-related Amyloidosis -Summary

• B2 microglobulin

- Three manifestations:
 - Peripheral arthropathy
 - Destructive spondyloarthropathy
 - Carpal tunnel syndrome
- Chronic dialysis (5+ years)

Erosive Arthropathy of Dialysis

- Avg 5 years of dialysis
- Probably multifactorial

 HPT, amyloid, CPPD, aluminum
- Hands/wrists

 Radiocarpal, MCPs, DIPs
- Erosions with narrowing of joint space

Cotton et al. Skel Rad. 1997(26)

Bone Disease Post Renal Transplantion

Osteonecrosis

Crystal disease (gout)

CIPS (calcineurininhibitor induced pain syndrome)

Osteonecrosis following renal transplantation

 Frequency of ON following transplantation has dramatically decreased with cyclosporine and tacrolimus

- 2 studies:
 - -232 patients \rightarrow 11 with ON (4.7%)
 - -326 patients \rightarrow 15 with ON (4.6%)

Takao et al. Rhematol Int. 2011;31:165-170

Hedri et al. Transplant Proc. 2007 May; 39(4): 1036-8

ON following renal transplantation

- Main risk factors
 - Cumulative steroid dose
 - Acute rejection

• Hip > knee

• Timing

- 6 months onward (avg 3.5 years post transplant)

Osteonecrosis

Van De Berg et al. Eur J Radiol. 2006;58

• In patients treated with steroids, osteonecrosis more common when femoral neck and intertrochanteric region contain more fat

Calcineurin-inhibitor induced pain syndrome (CIPS)

- Reversible symmetric lower extremity pain following transplantation
- 1989 \rightarrow cyclosporine
- 2001 \rightarrow tacrolimus
- Solid organ and bone marrow transplant
- Frequency: 1.5-14%
- Timing: several weeks to > 1 yr post transplant

CIPS

- Mechanism(s):
 - Altered vascular tone & permeability \rightarrow marrow congestion
 - Altered bone metabolism \rightarrow elevated alkaline phosphatase (ALP)

Edler GJ. Nephrology. 2006;11:560-567
CIPS

- Workup
 - Calcineurin-inhibitor serum level
 - Normal in first 3 months (5-15 ng/dL)
 - Trough levels not always elevated
 - Alkaline phosphatase (ALP)

CIPS - Imaging

• Xrays:

- May be normal
- Epiphyseal osteoporosis
- Metaphyseal periosteal reaction
- Effusions
- Findings may persist following resolution of symptoms

CIPS - Imaging

- Scintigraphy:
 - Uptake in flow and delayed phases

CIPS - Imaging

- MRI
 - Edema around knees, ankles, feet (dependent)
 - Symmetric
 - Associated fractures
 - Findings may outlast symptoms

CIPS – MR Imaging

CIPS - Treatment

• Calcium channel blocker (amlodipine)

• Alteration in immunosuppressive regimen

CIPS

- DDx
 - Osteonecrosis
 - Complex regional pain syndrome/RDS
 - Transient osteoporosis
 - Infection

Gout Following Renal Transplantation

- 7.6% frequency of newly diagnosed gout within 3 years of renal transplantation (United States Renal Data System)
- Risk Factors
 - Males, age
 - BMI
 - Cyclosporine vs. tacrolimus
 - GFR (<44)

Gout - Physiology

Hyperuricemia in Renal Transplantation

- Cyclosporine > tacrolimus
 - Increased uric acid reabsorption
 - Decreased uric acid secretion
- Other factors
 - Diuretics
 - Poor graft function

Gout - Distribution

• Classic sites:

- 1st MTP, TMT, CMC, popliteal groove

- Post renal tranplantation:
 - May see more proximal distribution
 - Increased burden of tophi

Post Renal Tranplant Bone Disease -Summary

- Osteonecrosis incidence has dramatically decreased (~5%)
- CIPS symmetric dependent lower extremity pain, marrow edema on MRI +/- fractures
- Gout calcineurin-inhibitors predispose to hyperuricemia and more proximal distribution may be seen

Thank you!

References

- Youtube.com Strong Medicine
- Resnick D, Kransdorf M. Bone and Joint Imaging, 3rd edition. 2005. Elsevier Saunders
- Murphey et al. Musculoskeletal manifestations of chronic renal insufficiency. Radiographics. 1993; 13:357-359
- Lim Cy and Ong KO. Various musculoskeletal manifestations of chronic renal insufficiency. Clinical Radiology. 2013; 68: e397-e411
- Boswell et al. Musculoskeletal manifestations of endocrine disorders. Clinical imaging. 2014; 38:384-396
- Jalili P and Kim SG. Multiple periradicular radioluciencies mimicking endodontic lesions in renal osteodystrophy of the mandible: a case report. International Endodontic Journal. 2015(0):1-9
- Resnick D. Erosive arthritis of the hand and wrist in hyperparathyroidism. Radiology. February 1974. 263-269
- Fathi I and Sakr M. Review of tumoral calcinosis:pathological entity. World J clin Cases. 2014; 2(9):409-414
- Kiss et al. Dialysis-related amyloidosis revisited. AJR. 2005; 185:1460-1467
- M,Bappe P, Grateau G. Osteo-articular manifestations of amyloidosis. Best Practice and Research Clinical Rheumatology. 2012; 26: 459-475

- Theodorou et al. Imaging in Dialysis Spondyloarthropathy. Seminars in Dialysis. August 2002; 15(4):290-296
- Cotton et al. Natural history of erosive arthropathy of the hands in patients undergoing hemodialysis. Skeletal Radiology. 1997(26):20-26
- Takao et al. Incidence and predictors of osteonecrosis among cyclosporin or tacrolimus-treated renal allograft recipients. Rhematol Int. 2011;31:165-170
- Hedri et al. Avascular necrosis after renal transplantation. Transplant Proc. 2007 May; 39(4): 1036-8
- Van De Berg et al. Correlation between baseline femoral neck marrow status and the development of femoral head osteonecrosis in corticosteroid treated patients: a longitudinal study by MR Imaging. European Journal of Radiology. 2006;58:444-449.
- Khalil et al. Natural History and Surgical Treatment of Brown Tumor Lesions at Various Sites in Refractory Primary Hyperparathyroidism. Eur J Med Res. 2007; 12:222-230
- Knowles et al. MRI Diagnosis of Brown Tumor Based on Magnetic Susceptibility. Journal of Magnetic Resonance Imaging. 2008; 28:759-761

- Olson Km and Chew FS. Tumoral Calcinosis: Pearls, Polemics, and Alternative Possibilities. Radiographics 2006; 26: 871-885
- Goffin et al. Epiphyseal impaction as a cause of severe osteoarticular pain of lower limbs after renal transplantation. Kidney International. 1993;44:98-106
- Edler GJ. From marrow edema to osteonecrosis: common pathways in the development of post-transplant bone pain. Nephrology. 2006; 11:560-567