

Metabolic and Endocrine Bone Disease Imaging

Dr. Tudor H. Hughes M.D., FRCR Department of Radiology University of California School of Medicine San Diego, California

Osteoporosis is the most common metabolic bone disorder. It has been defined by the National Institutes of Health as an age-related disorder characterized by

decreased bone mass and increased susceptibility to fractures

in the absence of other recognizable causes of bone loss.

Osteoporosis

- Type 1. Involutional osteoporosis affects mainly trabecular bone, occurs in women during the 15-20 years after the menopause, and is related to a lack of estrogen. This is thought to account for wrist and vertebral crush fractures, which occur through areas of principally trabecular bone.
- Type 2. Senile involutional osteoporosis. The fractures of old age seen at the hip, proximal humerus, pelvis and asymptomatic vertebral wedge fractures. This affects both trabecular and cortical bone and represents progressive loss of bone mass from the peak around the age of 18-35 years.
- Secondary osteoporosis is due to an underlying medical condition, such as renal disease, malabsorption, or hormonal imbalance, or to medical treatment such as steroids or certain anticonvulsants

Osteoporosis Measurement

- Plain film,
 - Subjective
 - Radiogrammetry
 - Radioabsoptiometry
- SPA
- DPA
- DEXA
- QCT
- US
- MRI

DEXA has very high

accuracy

(the difference in the measurement from a known standard) and

precision

(observed deviation of serial measurements with time),

both short and long term, to within 1% at the hip and spine

Bone Densitometry WHO uses T scores

• Normal

- > -1 SD below young adult
- Osteopenia
 - -1 -2.49 SD
- Osteoporosis
 - <= -2.5 SD
- Established (Manifest) Osteoporosis
 - + Fxs, usually spine, hip, proximal humerus, wrist, rib

Bone Densitometry

 T score is compared to reference population, 20-45 years, same sex, any race, any weight.

 Z score is matched for age, sex, weight and ethnicity.

Osteoporosis - OGI

REGION	BMD ¹	Young Adult	2 Age Matched ³
	g/cm ²	% T	% Z
NECK	0.702	66 -3.07	67 -2.84
WARDS	0.736	77 -1.73	80 -1.43
TROCH	0.598	64 -3.02	65 -2.91
REGION	BMD ¹	Young Adult	a Age Matcheda
	g/cm ²	%	% Z
L1 L2 L3 L4 L1-L2 L1-L3 L1-L4 L2-L3 L2-L4 L3-L4	0.537 0.704 0.640 0.653 0.627 0.632 0.637 0.637 0.673 0.666 0.647	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Bone Densitometry FRAX – Fracture risk assessment tool

- Age
- Sex
- Weight / Height BMI
- Spontaneous previous adult fracture
- Parent fractured hip
- Current smoking
- Glucocorticoids
- Rheumatoid arthritis
- Secondary osteoporosis
- Alcohol
- Bone mineral density

Bone Densitometry

Osteoporosis - Secondary

- Regional
 - Disuse
- General
 - Hormonal
 - Malabsorption
 - Drugs
 - Steroids
 - Anticonvulsants

Disuse Osteoporosis

Disuse Metaphyseal Lucency

Acute

Disuse Osteoporosis of Sesamoid

Acute

"Hawkins" Scaphoid

Disuse Osteoporosis

Sag PDFS

Sag T1FS Gd

Patchy Enhancement

Disuse Osteoporosis

52F injured left tibia after fall with persistent pain exacerbated with prolonged standing

- Syndrome
 - ↑ cortisol
- Pituitary 80% Cushings disease
 - 90% adenoma
 - 20% visible radiographically
- Adrenal 20%
 - Adenoma
 - Carcinoma
- Ectopic ACTH (Ca bronchus)

- 50% of Cushings syndrome adults are osteoporotic
- 30-50% pathologic fractures (trabecular-spine)
- Children also growth retardation
- Cortisol multifactorial effect on bone
 - Growth hormone
 - Hypogonadism
 - Calcium absorption
 - Renal calcium excretion

Codfish vertebrae 85F

Vitamin D

1,25 dihydroxycholecalciferol

Rickets

- Increased uncalcified osteoid in the immature skeleton
- Lack of Vitamin D
 - Dietary
 - Malabsorption
 - Renal tubular disease

Rickets – Growth Plate changes

- Widened growth plate
- Metaphysis
 - Fraying
 - Splaying
 - Cupping
 - Spurs
- Diaphysis
 - Indistinct cortex
- Rickety rosary
- Looser's zones

Rickets – Changes of Soft Bones

- Bowing
- Triradiate pelvis
- Harrison's sulcus
 - Soft ribs
- Scoliosis
- Biconcave vertebrae
- Basilar invagination
- Craniotabes

Rickets – Follow up

Dietary RicketsFull recovery on Rx

2002

2004

Rickets – Follow up

X-linked Hypophosphatemic Rickets

- Vitamin D resistant Rickets
- Familial Hypophosphatemic Rickets
- X-linked
 - Phosphate levels equally low, M=F
 - 1^α hydroxylation reduced in males
- Imaging
 - Identical to dietary Rickets

X-linked Hypophosphatemic Rickets

X-linked Hypophosphatemic Rickets

Hypophosphatasia

- Tissue nonspecific alkaline phosphatase
 TNSALP
- Causes defective mineralisation of bone
- Low serum alkaline phosphatase
- High serum phosphoethanolamine

Hypophosphatasia

- Perinatal Fatal
- Infantile 50% fatality
- Childhood Rickets
- Adult Poorly healing stress fractures
- Odontohypophosphatasia Loss of teeth

Hypophosphatasia - Neonatal

- Profoundly deficient mineralization
 - Knees
 - Wrists
 - Costochondral
- Fractures

Hypophosphatasia - Infantile

- Physes
 - Widened
- Metaphyses
 - Cupped
 - Frayed
- Demineralised epiphyses.
- Widened cranial sutures
- Craniostenosis brachycephaly

Hypophosphatasia - Childhood

- Physes
 - Widened
- Metaphyses
 - Cupped
 - Frayed
- Demineralised epiphyses
- Widened cranial sutures
- Craniostenosis brachycephaly

Hypophosphatasia - Adult

- Osteomalacia
- With ↓ bone density

Hypophosphatasia - Adult

27F multiple fractures, some incomplete, poorly healing, over 3 yrs

Osteomalacia

- ↑ uncalcified osteoid in the mature skeleton
- ↓ bone density
- Looser's zones
 - Scapula
 - Femoral neck
 - Femoral shaft.
 - Pubic rami
 - Ribs

Coarsened ill defined trabeculae

- Bone softening
 - Protrusio
 - Bowing
 - Biconcave vertebrae
 - Basilar invagination

Hyperparathyroidism

• Primary

- Parathyroid adenoma 90%
 - 2% are multiple
- Hyperplasia of all four glands 5%
 - Familial
- Carcinoma
- Ectopic
- MEN type 1 (hyperplasia or adenoma)
 - Pituitary adenoma and pancreatic tumor

Hyperparathyroidism

Secondary

- Failure to excrete phosphate in renal failure
- Phosphate binds with Calcium
- Due to ↓ serum Calcium

Hyperparathyroidism - Imaging

 Primary and secondary HPT have similar findings now that patients with renal failure have increased life expectancy.

 Previously thought that Brown tumors were more common in Primary HPT

Renal Osteodystrophy

- Renal glomerular disease
 - Bilateral reflux nephropathy
 - Pyelonephritis
 - Chronic glomerulonephitis
- Osteomalacia or Rickets
 - Failure to hydroxylate
- Secondary hyperparathyroidism
 - Failure to excrete phosphate
- Osteosclerosis
- Calcification more prominent in adults

Hyperparathyroidism – Imaging - Bones

- Osteopenia
 - Ground-glass
- Resorption
 - Subperiosteal
 - Fingers
 - Proximal tibia
 - Lateral clavicle
 - Symphysis pubis
 - Ischial tuberosity
 - Medial femoral neck
 - Cortical
 - Cortical tunneling
 - Pepper pot skull
- Osteosclerosis
 - Rugger jersey spine
- Brown tumors
 - Solitary sign in 3%
- Bone softening

Renal Osteodystrophy and Brown Tumors

Rib brown tumors 30F

Hyperparathyroidism – Imaging – Soft Tissues

- ST Cal
 - Arteries
 - Periarticular
 - Capsule
 - Tendon
 - Tumoral

Hyperparathyroidism – Imaging - Joints

- Marginal erosions
 - DIPJ
 - Ulnar side base of 5th MC
 - Hamate
 - No JSN
- Subchondral collapse
- Chondrocalcinosis
 - CPPD
 - Gout

Dialysis Spondylosis

Beta2 microglobulin destructive spondyloarthropathy

Primary and secondary HPT

Primary oxalosis

Primary oxalosis secondary hyperparathyroidism

Primary

- Hereditary hyperoxaluria
- AR, enzyme deficiency carboligase
- Diffuse calcium oxalate deposits
- Secondary
 - Disturbance of bile acid metabolism
 - Usually diseases of terminal ileum

Primary oxalosis secondary hyperparathyroidism

HypoPararthyroidism

- Hormone deficient
 - Surgery, Idiopathic
- Imaging
 - Osteosclerosis
 - DISH like ossification
 - Thickened calvarium
 - Sutural diastasis
 - Basal ganglia calcification

Pseudohypoparathyroidism

- Hormone resistant
 - End organ unresponsiveness to PTH
 - Usually bone and renal
- X linked dominant F>M
- Clinical Albright's hereditary osteodystrophy
 - Short statue, thickset features
 - \downarrow Calcium, \uparrow Phosphate, normal or \uparrow PTH
- Imaging
 - Short 4th > 5th > 1st metacarpals/tarsals
 - Exostoses
 - Basal ganglia calcification
 - Soft tissue calcification

PseudoPseudohypoparathyroidism

 Similar phenotypically to pseudohypoparathyroidism, but with normal plasma calcium

Pseudohypoparathyroidism

38 year old male with foot and heel pain with history of congenital deformity and obesity

Albright's hereditary osteodystrophy

- PseudohypoPTH (PHP) and PseudopseudohypoPTH (PPHP)
- X linked dominant;
 females > males
- PHP
 - Low Ca2+, high Ph
- PPHP (normocalcemic form of PHP)
 - Normal Ca2+ and Ph

PHP and PPHP

- Clinical features
 - Short stature, Obesity, Round face, Brachydactyly
- Typical radiographic findings
 - ST calcification and ossification plaquelike, assymetric, parallel skin surface
 - Basal ganglion Ca+ and Calvarial thickening
 - Short MC, MT, phalanges- especially 1st, 4th MC
 - Premature physeal fusion
 - Exostoses- centrally located with right angle to bone
 - Cone epiphyses
 - Wide bones

Thyroid Disorders

Hyperthyroidism

Thyroid Acropachy

Hypothyroidism

Thyroid Acropachy

- 0.5% of thyrotoxicosis
- After Rx

- Exopthalmos
- Painless STS of fingers
- Pretibial myxoedema
- Finger clubbing

Thyroid Acropachy Finger clubbing

 Periosteal new bone MC and proximal phalanges

Radial aspect of bone

Dense and solid

Thyroid Acropachy

Hypothyroidism Cretinism

- Appendicular skeleton
 - Delayed appearance of ossification centers
 - Delayed epiphyseal closure
 - Short slender long bones
 - Endosteal thickening
 - Dense metaphyseal bands.
 - Coxa vara with short femoral neck

Hypothyroidism Cretinism

Skull

- Brachycephaly
- Wormian bones
- Delayed sutural closure

 Poorly developed sinuses and mastoids.

Hypothyroidism Cretinism

- Axial skeleton
 - Flattened vertebrae
 Wide discs
 - Thoracolumbar kyphosis.
 - Hypoplastic bullet L1 or L2
 - Segmental sternum

Pituitary Disorders

Acromegaly

- Cushing's disease
- Hypopituitarism

Acromegaly

- Excessive growth hormone on mature skeleton
- Skull
 - Thickened vault
- Thorax and spine
 - [↑] sagittal diameter of chest with kyphosis
 - Enlarged vertebrae
- Appendicular skeleton

 - Terminal phalangeal tufting
 - Prominent entheses
 - Widened joint spaces
 - Premature OA
 - Osteoporosis
 - ↑ heel pad thickness

Acromegaly

- Excessive growth hormone on mature skeleton
- Skull
 - Thickened vault
- Thorax and spine
 - [↑] sagittal diameter of chest with kyphosis
 - Enlarged vertebrae
- Appendicular skeleton

 - Terminal phalangeal tufting
 - Prominent entheses
 - Widened joint spaces
 - Premature OA
 - Osteoporosis

Hypopituitarism

- Pituitary Dwarfism
 - Damage to anterior lobe of pituitary in childhood
- Delay in appearance and growth of ossification centers

Delay in closure

RADIOGRAPHIC ATLAS OF SKELETAL DEVELOPMENT OF THE HAND AND WRIST

- Excessive abnormal remodeling of bone
- Middle age 3%
- Old age 10%
- Spine 75%
- Skull 65%
- Pelvis 40%
- Proximal femur 75%

- Middle aged and elderly
- Excessive and abnormal remodeling of bone
- Initial osteolytic phase
- Subsequent osteosclerotic phase
- Enlarged bone with increased density and coarse trabecular

- Radiographic findings
- Active Osteolytic phase
 - Osteoporosis circumscripta
 - Advancing wedge of lucency

- Radiographic findings
- Mixed phase
 - Skull
 - Osteoporosis circumscripta with sclerosis
 - Pelvis
 - Mixed osteolytic and osteosclerotic
 - Long bones
 - Diaphyseal lucency
 - Epi/Meta sclerosis

- Radiographic findings
- Osteosclerotic phase
 - Skull
 - Thickened vault
 - Spine
 - Enlarged vertebrae
 - Coarse trabeculae
 - Pelvis
 - Often asymmetric
 - Long bones
 - Cortical thickening
 - Medullary encroachment

Paget's Disease

- Complications
 - Osseous deformity
 - Fractures
 - Nerve entrapment
 - Neoplasms
 - Osteomyelitis
 - Extramedullary hematopoiesis
 - Gout
 - Degenerative joint disease

Pathological fractures in Paget's

Alkaptonuria / Ochronosis

- Absence of homogentisic acid oxidase
- Pigmentation
- Arthropathy
- Osteoporotic with dense disc calcification
- Larger joints show DJD

Alkaptonuria / Ochronosis

Idiopathic Tumoral Calcinosis

- 10-30Yrs, black > white, M=F
- Elevated phosphate, normal calcium
 - Renal tubular phosphate resorption
- Single or multiple, firm, tumor like, painless
- Hips, Shoulders, Elbows, Ankles
- Dense, Flocculent, Amorphous,
- 1-20cm, fluid levels
- Recur if resected

• Dx of exclusion Periarticular calcified masses

Tumoral Calcinosis

• DDX

- Idiopathic
- Renal osteodystrophy
- Gout
- Hyperparathyroidism
- Collagen vascular Disease
- Hypervitaminosis D
- HADD

Homocystinuria – Metacarpal index

Average 2-5 abnormal if >8.4 male, >9.2 female

Homocystinuria 40F Marfanoid

Osteopetrosis

