### Practical approach to Cervical Spine Trauma

• Dr. Donald E. Olofsson



• A sincere and special thanks to Dr. Tudor Hughes for his inspiration, outstanding teaching and for his images.

### This was my best attempt.





### With Tudors help.

#### • Very professional.



# Overview



- Readout
- Anatomy
- Technique
- Trauma



- The scout view and reconstruction.
- Plain films: In and out of collar, flexion and Extension views
- CT, series included and reconstructions
- Stable vs. unstable
- A few classifications



## Reading Algorithm

### Reading Algorithm

- The scout view.
- Soft tissues including brain, tubes and lines.
- Bony alignment.
- Facet joint alignment.
- Look at common sites of fractures and the second fracture.
- Other bones, and maximal STS.

# The scout view (The hidden view)

- Also known at the Naval Hospital as...The staff view, the overview, the First view.
- Almost always included...Not always pushed to PACS and not always viewed.

### The scout view

• Within voice recognition (AGFA Talk) template you can add. [The scout view is unremarkable.]

### There may be a free lateral view.



### A nice frontal view.



### You may find the cause of pain.



### Scout view with humeral fractures



### These were known fractures.



### Scout view unremarkable



### You can window and level the scout. The Scout View



You will have to select the window/level from a different image.

### You can enlarge the scout. The Scout View



### Discover unexpected findings. The Scout View



#### Pneumothorax

### CXR several hours prior to CT with Chest tube. The Scout View

- The lung was up prior to CT. The tube was either clamped for CT or not functioning.
- No AM CXR ordered.
- Ward team notified.
- Note: all of these scout views are from the same morning.



### Pulling the scout view on AGFA

- Including the statement [The scout view is unremarkable.] in your template may help remembering to do this.
- You are responsible for the image anyway so the statement will not hurt you, and it may serve as a reminder to pull and look at the image.

### What the scout view can show.

- Fractures/Dislocations
- Tubes and lines
- Associated injuries
- Pneumothorax
- Foreign bodies

### Reconstructing the CT images

- Bring up the CT.
- Reconstruct the thin axial images.
- Bring up the sagittal images.
- Rotate to create a true axial.

### Reconstructing the CT images

- Level the axial from the coronal view.
- Double click the axial image to enlarge.
- Scroll the axial images C1 to about C3.
- Rotate off the sagittal for C4.
- Scroll
- Rotate off the sagittal for C5-T1.



### Anatomy

- The anatomy of C3-C6 is basically the same.
- The anatomy of C1,C2 and C7 are special.



### Normal C-SPINE The Atlas & Axis

#### C1 the Atlas:

Anterior and posterior arch & Lat Masses, Small transverse process (contains transverse foramen)

#### C2 the Axis: Body, lat masses, lamina, spinous process and Ondontoid process (dens).



### Craniocervical Ligaments

Cruciate ligament removed to show deepest ligaments: posterior view





- Body
- Lamina
- Spinous Process
- Transverse process
- Pedicle & Transverse
  process

C3-C6

• Articulating facets

### Anatomy









### Lateral view: Anatomy





### **Oblique View: Anatomy**





Greenspan

### **Oblique View: Anatomy**





# Technique
## Technique - Routine



### Lateral view: Technique



30M MVA Thought to be paraplegic

# Lateral view: Technique



**C7-T1 Fracture Dislocation** 

30M MVA Thought to be paraplegic

### Technique - Flexion / Extension



Open C1 posterior arch

### Technique - Flexion / Extension



#### 30F post trauma acute films

### Technique - Flexion / Extension



#### 30F post trauma 8d later

### Flexion and Extension



Extension

### Flexion and Extension



Flexion

### Technique - CT

- Excellent visualization of fractures
- Must be optimized
  - Thin slices 1 1.25 2mm
  - Bone and soft tissue algorithm / window
  - Orthogonal planes
    - Thin recons
  - Use workstation
  - 3D for alignment



### Technique - MRI

- Poor visualization of fractures
- Good for soft tissue injury
- Good for spinal cord injury assessment
- Good for spinal cord injury prognosis
- Good for root avulsion



# C-5 facet fracture not well seen on plain films





## C-5 facet fracture not well seen on plain films Technique - MR



### CT: Type l Odontoid Fracture Technique - CT



2.5mm Bone

1.25mm Bone

3

# Optimizing CT



- Half axial acquisition.
- Reducing dose.
- Altering pitch.
- Slice thickness.

# Fractures

# Life lines

- 1. Anterior vertebral body line
- 2. Posterior vertebral body line
- 3. Spinolamina line
- 4. Posterior spinous process line



**Reading Algorithm** 

Evaluate C1-C2 Area Adults: <3mm Child: <5mm

### Stable vs. Unstable

| Flexion     | Anterior Subluxation                | Stable   |
|-------------|-------------------------------------|----------|
|             | Unilateral facet dislocation        | Stable   |
|             | Bilateral facet dislocation         | Unstable |
|             | Wedge compression fracture          | Stable   |
|             | Flexion teardrop fracture           | Unstable |
|             | Clay-shoveler's fracture            | Stable   |
| Extension   | Posterior arch C1 fracture          | Stable   |
|             | Hangman's fracture                  | Unstable |
|             | Laminar fracture                    | Stable   |
|             | Pillar fracture                     | Stable   |
|             | Extension teardrop fracture         | Stable   |
|             | Hyperextension dislocation fracture | Unstable |
| Compression | Jefferson fracture                  | Unstable |
|             | Burst fracture                      | Stable   |
| Complex     | Odontoid fractures                  | Unstable |
|             | Atlantooccipital disassociation     | Unstable |

# Compression Fractures

- Stable
- Burst fracture

- Unstable
- Jefferson fracture

### Flexion: stable vs. unstable

- Stable
- Unilateral facet dislocation
- Wedge Compression
- Clay Shovel's

- Unstable
- Bilateral facet dislocation

### Extension: stable vs. unstable

• Posterior arch C1

Hangman's

- Laminar
- Pilar
- Extension tear drop

• Hyperextension dislocation fracture

### Pseudo (physiologic) Subluxation

- In children
- Ligament laxity
- Check Posterior Spinal (cervical) Line
- More than 2-3mm offset (SLL anterior to PSL at C2) must be considered traumatic.





- 40% missed dx at presentation
- STS +/- Retropharyngeal air
- Avulsion fractures occipital condyle or lower tip of clivus
- Classification:

Normal



Causes:

- Traumatic
- Nontraumatic
  - RA
  - Congenital Skeletal Abnormalities
  - Down's
  - Infection
  - CPPD
- Prognosis not good
  - (but 20% may have no deficit!)

### Atlantooccipital subluxation

### • BDI (Basion Dental Interval)

- Vertical distance of basion above dens <12 mm
- BAI (Basion Axial Interval)
  - Anterior distance of basion from PSL 4 12 mm
- Powers ratio:
  - Basion to C1 Posterior lamina line / Opisthion to posterior cortex of the anterior C1 tubercle <1</li>
- X method of Lee
- Clival line

### Occipito atlas separation Power's ratio



### BC should be less than AO

Powers B, et al. Neurosurgery. 1979 Jan;4(1):12-7. Traumatic anterior Atlanto-occipital dislocation.

# The X-line



X

### Occipito atlas separation





Lee C, et al <u>AJNR Am J Neuroradiol. 1994 May;15(5):990.</u> Evaluation of traumatic atlantooccipital dislocations.

### Occipito atlas separation Clival Line - Normal



### Occipito atlas separation Basion Axial Interval



Harris JH Jr AJR Am J Roentgenol. 1994 Apr;162(4):887-92. Radiologic diagnosis of traumatic occipitovertebral dissociation:



#### Powers

Powers B, et al. Neurosurgery. 1979 Jan;4(1):12-7. Traumatic anterior Atlanto-occipital dislocation.

Atlanto axial and cranial atlas separation 32M



### X method

Lee C, et al <u>AJNR Am J Neuroradiol. 1994 May:15(5):990.</u> Evaluation of traumatic atlantooccipital dislocations. Atlanto axial and cranial atlas separation 32M



Atlanto axial and cranial atlas separation 32M



### Basion Dens interval

Harris JH Jr AJR Am J Roentgenol. 1994 Apr;162(4):887-92. Radiologic diagnosis of traumatic occipitovertebral dissociation:



13 y.o girl s/p MVA unconscious
# Atlanto-occipital Dislocation.



# Atlantooccipital subluxation



# Atlas

#### Fractures

- Jefferson
- Isolated posterior arch

Subluxation

- Atlanto axial
- Rotary



# Jefferson Fracture

Jefferson Fracture



• Compression to vertex

• Diving injury

• Rx. Halo for 3m

• Radiographic findings

- AP open mouth is key
- C1 lateral masses laterally displaced
- –>2mm bilaterally always abnormal
- 1-2mm unilaterally may be head tilt

Vertical Compression – Unstable

- 1. Unilateral or Bilat FX's of both ant and post arches of C1
- 2. Displacement of lateral masses.
- 3. CT required for defining full extent of fracture and detecting fragments in spinal cord/canal
- 4. Treatment: Halo placement for 3 months





Vertical Compression – Unstable

- 1. Unilateral or Bilat FX's of both ant and post arches of C1
- 2. Displacement of lateral masses.
- 3. CT required for defining full extent of fracture and detecting fragments in spinal cord/canal
- 4. Treatment: Halo placement for 3 months



Normal Direction of forces

### Jefferson Fracture

- Axial loading
- Often 4 part Fx, or single both side fractures
- Splaying of lateral masses
- Disruption of transverse ligament
- Best seen on AP odontoid and axial CT

# Jefferson Fracture







## Atlanto Axial Distance



- Females < 2mm
- Males < 3mm
- Children < 4mm



# Odontoid Fracture

#### Dens Fractures



TYPE 1 - Avulsion fx of the tip. Considered Stable

TYPE II - Fx at Base of Dens.Most CommonPoor blood supplyUnstable

TYPE III - Fx into body of axis

Best Prognosis

Unstable

Anderson and D'Alonzo

# Type l Odontoid Fracture



# Type 1 Odontoid Fracture





# •Type 2 • Odontoid Fracture

# Type Il Odontoid Fracture



# Type Il Odontoid Fracture



#### Type 11 Odontoid Fracture







#### ? Type 11 Odontoid Fracture





# Type 3 • Odontoid Fracture

# Displaced type 3 odontoid fx





# Low Type Ill Odontoid fracture



# Type Ill Odontoid Fracture



# Type Ill Odontoid Fracture





# Hangman Fracture

- Traumatic Spondylolisthesis of the Axis
- Bilateral C2 pars (common) or Pedicle (less common)
- Hyperextension and traction injury of C2
  - MVA (chin to dashboard)
  - Hanging
- The odontoid and its attachments are intact.
- Nerve damage is uncommon owing to the width of the canal at this level.



- Traumatic Spondylolisthesis of the Axis
- Bilateral C2 pars (common) or Pedicle (less common)
- Hyperextension and traction injury of C2
  - MVA (chin to dashboard)
  - Hanging
- The odontoid and its attachments are intact.
- Nerve damage is uncommon owing to the width of the canal at this level.



Effendi classification

Grade 1: extension injury, displacement < 2mm. Rx flexion.

Grade 2: extension injury, displacement >2mm and angulation. Rx flexion.

Grade 3: flexion injury, C2-3 facet joint subluxation/ dislocation. Rx extension.

#### Effendi classification

Type I: bilateral pars fractures, normal C2/C3 disc space and minimal / no displacement of C2 body. LE1

Type II: displacement of anterior fragment, abnormal C2/C3 disc LE2b

Type III: anterior displacement of the anterior fragment, body of C2 in flexed position, bilateral facet dislocation LE2a/LE3

#### Levin and Edward's

Type 1: Neural arch fracture, < 3mm displacement, no angulation

Type 2: A; + angulation

Type 2: B; +>3mm displacement

Type 3: + bilateral facet dislocation C2-3





Type I

Type II





Type IIA

Type III



# Hangman Fx



#### Hangman Fracture – Effendi 1





32 Y.O. Drunk, fell off cliff


#### Hangman Fracture – Effendi ll –

LE2a



Posterior arch C1 Fx

#### Hangman Fracture – Effendi 111 – LE3



- Fractures
  - Tear drop
    - Flexion
    - Extension
    - Posterior
  - Burst
  - Posterior arch
  - Clayshoveller's Fracture

- Dislocations
  - Unifacet
  - Bifacet

#### Fracture Dislocations

-/

- Unilateral
- Bilateral
- Floating lateral mass



## Compression

C3-7

#### Wedge Compression Fracture

- Usually stable
- Loss of height anterior vertebral body
- Buckled anterior cortex
- Anterosuperior fracture of body
- Differentiate from Burst
  - Lack of vertical fracture component
  - Posterior cortex intact

Flexion
Teardrop

C3-7

#### Flexion Teardrop

- Flexion Fracture Dislocation
- Unstable
- Most severe Cervical spine injury
- Anterior cord syndrome
  - Quadriplegia
  - Loss of anterior column senses
  - Retention of posterior column senses
- Associated with Tx or Lx spine Fx in 10%



#### Flexion Teardrop

- Teardrop fracture anteroinferior
- All ligaments disrupted
- Posterior subluxation of vertebral body
- Bilateral subluxated or dislocated facets
- Spinal canal compromise





#### C5-C6 Flexion Distraction Teardrop



35M MVA

#### C4 Flexion Teardrop



#### C5 and C7 tear drop fractures



#### C5 and C7 tear drop fractures



#### C6 Flexion Teardrop



- 1. Significant Prevert ST Swelling
- 2. Comminuted Fx of body of C6 with Anterior displacement of a teardrop fracture fragment.

# Extension Teardrop

C3-7

#### Extension Teardrop Fracture

- Avulsion fracture of anteroinferior corner of C2>C3>C4
- Radiographic findings
  - Teardrop pulled off by ALL
  - Vertical height of fragment >= width



#### C2 Extension Teardrop



#### C3 Extension Teardrop



#### C5 Extension Teardrop







## Rupture

C3-7

#### Anterior Longitudinal Ligament Rupture



# Posterior Teardrop

C3-7

#### C6 Posterior Teardrop



#### C6 Posterior Teardrop



#### C6 Posterior Teardrop



### Burst Fracture

C3-7

### Burst Fractures Same mechanism as Jefferson Fx but located at C3-C7.

- Injury to spinal cord (due to displacement of posterior fragments) is common.
- Requires CT to evaluate.
- Stable

#### C5 Burst Fracture



#### Burst FX of C5 Flexion teardrop mechanism



- 1. Prevert ST Swelling
- 2. Comminuted FX of C5 w/slight retrolisthesis of C5/6
- 3. Extension of Fx into the posterior elements

48 y.o s/p mva with quadriplegia

#### CT, Burst FX of C5



48 y.o s/p mva with quadriplegia

## Facet Dislocation

C3-7

#### Facet Dislocation - Subluxations

- Anterior subluxation (hyperflexion strain)
  - The Posterior Ligament complex is disrupted. (30-50% can show delayed instability)
- Unilateral facet dislocation (stable)
  - Results from simultaneous flexion and rotation
- Bilateral Facet Dislocation (unstable)
  - Results from extreme flexion of head and neck without axial compression



#### Facet Dislocation - Subluxations

- Anterior subluxation (hyperflexion strain)
  - The Posterior Ligament complex is disrupted. (30-50% can show delayed instability)
- Unilateral facet dislocation (stable)
  - Results from simultaneous flexion and rotation
- Bilateral Facet Dislocation (unstable)
  - Results from extreme flexion of head and neck without axial compression



Anterior subluxation (hyperflexion strain) - Subluxations

The Posterior Ligament complex is disrupted. (30-50% can show delayed insurance)

- Unilateral facet dislocation (stable)
  - Results from simultaneous flexion and rotation
- Bilateral Facet Dislocation (unstable)
  - Results from extreme flexion of head and neck without axial compression

Locked facets

٠

Perched facets

Subluxated facets







### Unilateral

C3-7

-Facet Dislocation

#### Unilateral Facet Dislocation

- Simultaneous flexion and rotation
- Best seen on lateral and oblique views
- Vertebral body subluxation  $< \frac{1}{2}$  of AP width
- Disrupted "shingles on a roof" on oblique view
- Facet within foramen on oblique view
- Disrupted posterior ligaments
- Disrupted SP line on AP
- Butterfly appears



#### Rotational Subluxation



- 1. Prevert ST Normal
- 2. Normal Alignment
- 3. Abrupt change in rotation at level of C4-C5.
- 4. Facets superimposed at C5-6-7.

*33 y.o. s/p MVA*
#### Rotational Subluxation





#### C2-3 Unilateral jumped facet



#### C6-7 Unilateral jumped facet



**Butterfly** 

#### C5-6 Unilateral jumped facet



#### C5-6 Unilateral jumped facet



#### C5-6 Unilateral locked facet



#### C6-7 Unilateral locked facet



- 1. Prevert ST Normal
- Gd I anterolisthesis of C6 on C7
- 3. Facets of C7 and T1 superimposed while facets of C6 are abruptly obliqued on C7

22 Y.O. S/P MVA

#### Unilateral facet lock, C6 on C7





Bifacet
 Dislocation

C3-7

#### Bifacet Dislocation

- Extreme flexion without compression
- Unstable
- Vertebral body anterolisthesis  $> \frac{1}{2}$  AP body
- Batwing or bowtie appearance of adjacent facets
- Wide SP on AP view
- Disrupted ALL, disc and posterior ligaments

### C7-T1 Bifacet dislocations



#### C7-T1 Bifacet dislocations



# Unifacet Fracture Dislocation

C3-7

#### Unifacet Fracture Dislocation

More common than pure dislocation

• Signs as before + fracture

• Fracture of facet often not seen on radiographs

#### C5-6 Uni Facet Fracture Subluxation



#### C5-6 Uni Facet Fracture Subluxation



#### C5-6 Uni Facet Fracture Subluxation











1

#### C6-7 Fx subluxation



1+11+18

#### 25M MVA

#### C5-6 Uni Fx dis with post op unstable C4-5



#### C5-6 Uni Fx dis with post op unstable C4-5



## Bifacet Fracture Dislocation

C3-7

Bifacet Fracture Dislocation

• Higher energy than bifacet dislocation

• MVA

### Facet Fracture

C3-7

#### Hyperextension fracture dislocation

Severe circular hyperextension force

 Impact on forehead

• Anterior vertebral displacement

• Unstable

#### Hyperextension fracture dislocation

- Radiographic findings
  - Mild anterior subluxation
  - Comminuted articular mass fracture
  - Contralateral facet subluxation
  - Disrupted ALL, PLL

#### Hyperextension fracture dislocation



#### Clay Shovlers

- The shoveler: Special power shoveling.
- Weakness: Spinous process fractures.



•http://www.imdb.com/title/tt0132347/

The Mystery Men



## lay Shoveler's Fracture



C3-7

#### Clay Shoveler's Fracture

• Oblique avulsion fx of spinous process

• C7 > C6 > T1 levels

• Due to powerful hyperflexion



#### Clay Shoveler's Fracture

• Best seen on lateral view



#### Clay Shoveler's Fx





- 1. Oblique avulsion fx of the spinous process (C7 > C6 > T1)
- 2. Mechanism: Hyperflexion
- 3. Stable

28 y.o construction worker
### Old C6 clay shoveler's



# Flexion Subluxation

C3-7

#### Anterior Subluxation

• Hyperflexion sprain

• Posterior ligament complex disrupted

• 20-50% s



#### Anterior Subluxation

- Radiographic findings
  - Localized kyphotic angle
  - Fanning
    - Widened interspinous/interlaminar distance
  - Posterior widening of disc space
  - Subluxation of facet joints
  - Anterior subluxation



## Facet Dislocation - Subluxations

- Anterior subluxation (hyperflexion strain)
  - The Posterior Ligament complex is disrupted. (30-50% can show delayed instability)
- Unilateral facet dislocation (stable)
  - Results from simultaneous flexion and rotation
- Bilateral Facet Dislocation (unstable)
  - Results from extreme flexion of head and neck without axial compression



#### C3-4 Flexion subluxation injury



#### Unstable Posterior Ligamentous Injury at C5-C6



27 y.o. female 3 mo s/p trauma with more recent "neck crackings" by chiropractor.

#### Unstable Posterior Ligamentous Injury at C5-C6





27 y.o. female 3 mo s/p trauma with more recent "neck crackings" by chiropractor.



Cx-Spine - Stability

• Stability is a function of ligamentous injury

• Can be inferred from radiographs for certain fracture patterns

- Not 100% accurate
  - Eg. Flexion subluxation

#### Cx-Spine - Stability

#### FIG. 8.13 CLASSIFICATION OF INJURIES TO THE **CERVICAL SPINE BY MECHANISM OF INIURY** AND STABILITY Condition Stability C-1 ligamentum FLEXION INJURIES nuchae Subluxation Stable Dislocation in facet joints (locked facets) Unilateral Stable Bilateral Unstable anterior longitudinal **Odontoid** fractures posterior ligament longitudinal Type I Stable Type II Unstable ligament Type III Stable Wedge fracture Stable Clay-shoveler's fracture Stable Teardrop fracture Unstable intervertebral disk **EXTENSION INIURIES** Fracture of posterior arch Stable interspinous of C-1 ligament Hangman's fracture Unstable C-7 "Extension teardrop" fracture Stable **COMPRESSION INJURIES** supraspinou **Iefferson's** fracture Unstable ligament **Burst** fracture Stable

An unstable injury, is one which can progress and cause cord injury.

Greenspan



| Flexion     | Anterior Subluxation                | Stable   |
|-------------|-------------------------------------|----------|
|             | Unilateral facet dislocation        | Stable   |
|             | Bilateral facet dislocation         | Unstable |
|             | Wedge compression fracture          | Stable   |
|             | Flexion teardrop fracture           | Unstable |
|             | Clay-shoveler's fracture            | Stable   |
| Extension   | Posterior arch C1 fracture          | Stable   |
|             | Hangman's fracture                  | Unstable |
|             | Laminar fracture                    | Stable   |
|             | Pillar fracture                     | Stable   |
|             | Extension teardrop fracture         | Stable   |
|             | Hyperextension dislocation fracture | Unstable |
| Compression | Jefferson fracture                  | Unstable |
|             | Burst fracture                      | Stable   |
| Complex     | Odontoid fractures                  | Unstable |
|             | Atlantooccipital disassociation     | Unstable |

#### Cervical Spine - Stability

- MRI
  - Shows
    - Edema of soft tissues
    - Paravertebral hematoma
    - Ligamentous disruption
  - Still does not indicate instability
  - Negative study does not indicate stability

#### Cx-Spine - Stability

- Flexion Extension views
  - Patient should be erect
  - Should wait 2w for spasm to resolve
  - Must see to T1
  - Must move > 30 degrees

#### Cx-Spine signs of instability on Flex/Ex.

- Subluxation greater than 3.5mm
- Angular deformity of more than 11 deg.
- Compression fx more than 25% loss of height
- Narrowing of the disk space.
- Widening of the interspinous distance 1.5X
- Facet joint widening



• One view is no view.

• 20% of spinal fractures are multiple

• 5% of spinal fractures are at discontinuous levels

 Most spinal fractures occur in upper (C1-C2) or lower (C5-C7) regions



Spinal cord injury occurs

- -At time of trauma 84%
- –As a late complication 15%

•Any signs/symptoms of cord injury require MRI.

•Get CT in patients with unexplained prevertebral soft tissue swelling.

#### Online credits:

- <u>www.crayola.com</u>
- <u>www.rad.washington.edu</u>
- <u>www.ispub.com</u>
- <u>www.radiographicceu.com</u>
- <u>http://www.imdb.com/title/tt0132347/</u>

## If your head comes away from your neck, it's over!



#### The Highlander

http://www.imdb.com